Electronic Supplementary Information (ESI) for

The Stability and Nonlinear Optical Properties: Encapsulation of an Excess Electron

Compound LiCN...Li within Boron Nitride Nanotubes

Rong-Lin Zhong ^a, Hong-Liang Xu,^{a,*} Shabbir Muhammad,^b Ji Zhang^a and Zhong-Min Su^{a,*}

^a Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University,

Changchun 130024, Jilin, People's Republic of China, <u>hlxu@nenu.edu.cn</u>, <u>zmsu@nenu.edu.cn</u>

^bDepartment of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka,

Osaka 560-8531, Japan

Computational Details for Sum-Over-States (SOS) Method

The static first hyperpolarizabilities were calculated by using the sum-over-states (SOS) formula¹. The expression of the static first hyperpolarizabilities (β) can be obtained by the application of CIS (or TDDFT) method to the interacting electromagnetic field and microscopic system. The zeroth-order Born-Oppenheimer approximation was also employed to separate the electronic and atomic components of β . The expression for β_{ijk} is

$$\beta_{ijk} = \frac{1}{4\hbar^2} P(i, j, k; -\omega_{\sigma}, \omega_1, \omega_2) \times \sum_{m \neq g} \sum_{n \neq g} \left[\frac{(\mu_i)_{gm} (\overline{\mu}_j)_{mn} (\mu_k)_{gn}}{(\omega_{mg} - \omega_{\sigma} - i\gamma_{mg}) (\omega_{ng} - \omega_l - i\gamma_{ng})} \right]$$
(1)

Where $(\mu_i)_{gm}$ is an electronic transition moment along the i axis of the Cartesian system, between the ground state and the excited state, $(\overline{\mu_j})_{mn}$ is the dipole difference equal to $(\mu_i)_{mn} - (\mu_i)_{gg}$, ω_{mg} is the transition energy, ω_1 and ω_2 are the frequencies of the perturbation radiation fields, and $\omega_{\sigma}=\omega_1 + \omega_2$ is the polarization response frequency; P (i, j, k; $-\omega_{\sigma}$, ω_1 , ω_2) indicates all permutations of ω_1 , ω_2 , and ω_{σ} along with associated indices i, j, and k; γ_{mg} is the damping factor. Herein, a self-compiled program using the results of CIS (TDDFT) and the SOS formula to obtain the β value is adopted. Our group has used this method to investigate the NLO properties of a series of compounds²⁻⁴. In this work, the β_0 is defined as following

$$\beta_0 = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$$
(2)

Where
$$\beta_i = \frac{3}{5} (\beta_{iii} + \beta_{ijj} + \beta_{ikk}), i, j, k = x, y, z$$
 (3)

The accuracy of the SOS method mainly depends on the convergence of calculation results²⁻⁶. According to the convergent curves (see the following figure), employing 30 states in the present work is a reasonable approximation for the calculation of values.

Figure. The convergent curves of β_0 values as computed in the SOS formalism as a function of the number of excited

Table S1. The First Hyperpolarizability (β_0 a.u.) of LiCN...Li at QCISD/6-31+G(d) Level, Basis Effect on β_0 of

CAM-B3LYP						
	6-31+G(d)	6-31++G(d,p)	6-311++G(d,p)	6-311++G(2df,2p)	6-311++G(3df,3pd)	QCISD/6-31+G(d)
β_{X}	310176	310176	272926	265043	273677	95095
${eta}_{ m Y}$	-3103	-3102	-2564	-2582	-2574	105702
$\beta_{\rm Z}$	1774	1774	927	876	874	212621
${eta}_0$	310197	310197	272939	265057	273690	255781
number of basis						
functions	76	76	88	136	156	76
Time Cost	715.5	726.0	865.0	3329.4	4479.9	6551.9

LiCN...Li Calculated by the CAM-B3LYP Method and Corresponding Time Cost (s).

Table S2. The Most Important Transition Energies (ΔE) and Oscillating Strengths (f_0) of LiCN...Li, 1 and 2 Calculated at CAM-B3LYP/6-31+G(d) Level and Fragments Contributions to the Most Important Transition Molecular Orbitals of 1 and 2

	LiC	NLi]	1	2	
f_0	0.212		0.082		0.114	
$\Delta E (eV)$	1.442		2.139		2.327	
main contribution	SOMO->	SOMO->	SOMO->	SOMO->	SOMO->	SOMO->
	LUMO+3	LUMO+11	LUMO+3	LUMO	LUMO+6	LUMO+5
contribution coefficient	0.712	0.558	0.800	0.431	0.841	0.452
fragment			LiCNLi	BNNT	LiCNLi	BNNT
LUMO			18.56%	81.44%	11.17%	88.83%
LUMO+3			87.24%	12.76%		
LUMO+6					9.08%	90.92%

1 and 2.

	distance to the B-rich edge (Å)	energy (eV)
1	0	-55185.2
2	0.5	-55185.1
3	1.0	-55184.7
4	1.5	-55183.4
5	2.0	-55182.6
6	2.5	-55181.9
7	3.0	-55181.7
8	3.5	-55181.4
9	4.0	-55181.8
10	4.5	-55182.6
11	5.0	-55182.9
12	5.5	-55182.7
13	6.0	-55182.2
14	6.5	-55181.9
15	7.0	-55181.6
16	7.5	-55181.2
17	8.0	-55180.9
18	8.5	-55181.0
19	9.0	-55181.3
20	9.5	-55181.7
21	10.0	-55182.6
22	10.5	-55183.6
23	11.0	-55184.5
24	11.5	-55185.5

Table S3. The Energy Values of 1 System (The Distance of LiCN...Li to the B-rich Edge of 1 as a Function of Energy)

Table S4. The Energy Values of 1 System (The Distance of LiCN...Li to the wall of the BNNT as a Function of

Energy)

	distance to the wall (Å)	energy (eV)
1	0.72	-55075.5
2	1.22	-55119.3
3	1.72	-55129.9
4	2.22	-55132.5
5	2.72	-55129.8
6	3.22	-55119.1
7	3.72	-55073.9

Figure S1. The Most Important Transition Molecular Orbitals of LiCN...Li, 1 and 2 Calculated at CAM-B3LYP/6-31+G(d) Level

Figure S2. The optimized structures of LiCN...Li@BNNT[5,0], LiCN...Li@BNNT[7,0], LiCN...Li@BNNT[8,0]

Figure S3. The Variation of Energy in the Process Which LiCN...Li Cross the BNNT from the Upper Wall to the

Bottom Wall

Reference and Notes

- 1 B. J. Orr and J. F. Ward, Mol. Phys. 1971, 20, 513-526.
- 2 L. K. Yan, G. C. Yang, W. Guan, Z. M. Su and R. S. Wang, J. Phys. Chem. B, 2005, 109, 22332.
- 3 G. C. Yang, W. Guan, L. K. Yan, Z. M. Su, L. Xu and E. B. Wang, J. Phys. Chem. B, 2006, 110, 23092.
- 4 W. Guan, G. C. Yang, L. K. Yan and Z. M. Su, Inorg. Chem., 2006, 45, 7864.

Optimized Cartesian Coordinates

LiCN...Li

Ν	-0.55313300	-0.00730100	0.00010500
С	0.62143500	-0.00457200	-0.00014400
Li	-2.53089200	0.01394400	-0.00003900
Li	2.57866700	0.01223500	0.00008300
BNNT			
Н	4.520661	0.630614	-2.340269
Н	4.519964	2.348281	-0.625180
Н	4.520115	1.716421	1.719596
Н	4.520425	-0.630941	2.341241
Н	4.520131	-2.347270	0.625051
Н	4.519962	-1.717116	-1.720304
Н	-4.818884	0.683209	-2.535278
Н	-4.819334	2.535797	-0.676142
Н	-4.820318	1.849796	1.853684
Н	-4.820411	-1.849258	-1.853273
Н	-4.818687	-0.683558	2.536551
Н	-4.819280	-2.536206	0.676130
В	-3.645451	-0.629232	2.333169
В	-1.484556	0.615776	2.308242
В	-1.484500	-1.692813	1.687293
В	0.676330	-0.624516	2.317145
В	0.676320	-2.320820	0.618406
В	2.836912	-1.699491	1.693718
В	2.836997	-2.319945	-0.624612
В	0.676146	-1.695421	-1.699188
В	-1.484339	-2.310713	-0.622104
В	-3.645025	-2.338219	0.623240
В	-3.645552	-1.707262	-1.710499
В	-3.645552	1.707402	1.710528
В	-3.645023	2.338136	-0.623294
В	-3.645458	0.629149	-2.332928
В	-1.484537	-0.615800	-2.308368
В	-1.484446	1.692829	-1.687338
В	-1.484363	2.310751	0.622056
В	0.676293	2.320883	-0.618339
В	0.676171	1.695448	1.699105
В	2.836981	1.699549	-1.693405
В	2.836963	2.320151	0.624439

В	2.837129	-0.618487	-2.316921
В	2.837117	0.618205	2.316878
Ν	-2.934022	1.760543	-1.754949
Ν	-2.934094	-0.639532	-2.398663
Ν	-0.769467	0.650740	-2.415467
Ν	-0.769657	-1.768535	-1.772504
Ν	1.389144	-0.644644	-2.417707
Ν	1.388900	1.773177	-1.767610
Ν	3.512675	0.662055	-2.457012
Ν	3.511764	-1.801145	-1.804625
Ν	3.511851	2.464261	-0.656202
Ν	3.511916	1.800363	1.803862
Ν	3.512016	-2.463181	0.655980
Ν	3.512443	-0.662374	2.458130
Ν	1.389107	0.644542	2.417411
Ν	1.388847	-1.773431	1.767904
Ν	1.388716	2.418860	0.651180
Ν	1.388733	-2.418511	-0.651074
Ν	-0.769410	2.419716	-0.644560
Ν	-0.769410	-2.419637	0.644520
Ν	-0.769664	1.768492	1.772402
Ν	-0.769525	-0.650775	2.415523
Ν	-2.934136	0.639494	2.398382
Ν	-2.934075	-1.760487	1.754814
Ν	-2.934130	2.400743	0.645874
Ν	-2.934116	-2.400690	-0.645956
В	0.676404	0.624422	-2.317099
1			
Н	4.582960	-0.614411	-2.372710
Н	4.581781	1.750969	-1.712670
Н	4.578851	2.372439	0.660950
Н	4.579241	0.616519	2.379260
Н	4.581090	-1.745061	1.714400
Н	4.580430	-2.375071	-0.657670
Н	-4.735010	-0.683488	-2.648020
Н	-4.735749	1.951122	-1.919260
Н	-4.737039	2.642242	0.731480
Н	-4.735480	-2.638198	-0.733870
Н	-4.737039	0.684312	2.655560
Н	-4.736570	-1.957088	1.918230
В	-3.577489	0.615852	2.389860

В	-1.415159	1.718941	1.749800
В	-1.414140	-0.657769	2.363750
В	0.715401	0.615960	2.384530
В	0.716650	-1.758210	1.726540
В	2.895200	-0.646960	2.333510
В	2.896150	-2.346400	0.605790
В	0.717090	-2.376730	-0.659520
В	-1.413260	-2.377939	0.612990
В	-3.576430	-1.762828	1.728060
В	-3.575070	-2.377208	-0.660960
В	-3.577319	2.378522	0.658530
В	-3.574879	1.759822	-1.730100
В	-3.573970	-0.616128	-2.388200
В	-1.412460	-1.719749	-1.752160
В	-1.411729	0.657841	-2.366060
В	-1.413789	2.377981	-0.614560
В	0.717401	1.760880	-1.725350
В	0.715731	2.375850	0.660010
В	2.898151	0.649420	-2.329210
В	2.895231	2.347960	-0.603720
В	2.897160	-1.699010	-1.726700
В	2.893631	1.697780	1.728790
Ν	-2.859459	0.673281	-2.424230
Ν	-2.860200	-1.761259	-1.794330
Ν	-0.706460	-0.653259	-2.532420
Ν	-0.707710	-2.520439	-0.700480
Ν	1.449160	-1.747600	-1.779010
Ν	1.449951	0.667730	-2.398790
Ν	3.572200	-0.637310	-2.465280
Ν	3.569550	-2.466100	-0.683270
Ν	3.571841	1.823700	-1.785800
Ν	3.567951	2.462830	0.685430
Ν	3.571140	-1.818660	1.786230
Ν	3.568571	0.639640	2.472810
Ν	1.446081	1.748580	1.780330
Ν	1.447340	-0.667600	2.403450
Ν	1.447801	2.419380	-0.623220
Ν	1.448400	-2.415920	0.623850
Ν	-0.707359	1.867231	-1.832620
Ν	-0.708470	-1.866219	1.831050
Ν	-0.709859	2.519791	0.699420
Ν	-0.710069	0.653091	2.530290
Ν	-2.864069	1.758661	1.790400
Ν	-2.862580	-0.673779	2.420330

Ν	-2.861949	2.435271	-0.630050
Ν	-2.861140	-2.436149	0.627940
Ν	-1.554649	-0.002069 -	-0.003970
С	-0.393259	-0.001309	0.001550
Li	-3.375939	0.004542	0.015890
Li	1.588561	-0.013220	-0.017510
В	0.718320	-0.615910	-2.386920
2			
Н	-4.52361300	-1.74856200	-1.69721700
Н	-4.52241500	-2.34049300	0.66577800
Н	-4.52103600	-0.59626400	2.36558800
Н	-4.52109900	1.74554100	1.69897500
Н	-4.52275400	2.34582900	-0.66138100
Н	-4.52411400	0.59754000	-2.36012500
Н	4.79435500	-1.94753100	-1.89528500
Н	4.79495500	-2.61953400	0.73931000
Н	4.79607300	-0.66763800	2.63984200
Н	4.79232700	0.66545800	-2.63945000
Н	4.79713100	1.95269000	1.89520300
Н	4.79417700	2.61961200	-0.74559600
В	3.64287300	1.74515800	1.69307600
В	1.46432100	0.66724800	2.35348400
В	1.46333700	2.37417500	0.59907600
В	-0.67268700	1.76196700	1.71277100
В	-0.67424600	2.36520700	-0.66882400
В	-2.83070400	2.38200800	0.60347800
В	-2.83313400	1.71383000	-1.75978700
В	-0.67556200	0.60234000	-2.38159400
В	1.46164900	1.70648300	-1.75647200
В	3.63976400	2.34195800	-0.66608400
В	3.63781400	0.59494300	-2.35926800
В	3.64235100	-0.59653500	2.35730700
В	3.64033800	-2.34228000	0.66117900
В	3.63895300	-1.74336900	-1.69522600
В	1.46125800	-0.66772700	-2.35534300
В	1.46219600	-2.37472500	-0.60020000
В	1.46369800	-1.70666000	1.75518200
В	-0.67388400	-2.36443000	0.67168000
В	-0.67254600	-0.60161400	2.38301500
В	-2.83230400	-2.38281300	-0.60086500
В	-2.83061500	-1.71063700	1.76311300
В	-2.83389500	-0.67056000	-2.36364500

В	-2.82953000	0.66968500	2.36339400	
Ν	2.91013800	-2.40940400	-0.60998700	
Ν	2.90909100	-0.67766800	-2.39103300	
Ν	0.75917700	-1.86121700	-1.80837000	
Ν	0.75880100	0.63555400	-2.51656100	
Ν	-1.39695400	-0.69470900	-2.44934000	
Ν	-1.39573800	-2.47155600	-0.62309500	
Ν	-3.51354100	-1.82393300	-1.77103900	
Ν	-3.51385300	0.62241200	-2.46053000	
Ν	-3.51244300	-2.44299100	0.69386900	
Ν	-3.51083300	-0.62199700	2.46614300	
Ν	-3.51273200	2.44753400	-0.69125200	
Ν	-3.51112200	1.82226700	1.77208800	
Ν	-1.39313200	0.69540300	2.45330500	
Ν	-1.39410500	2.47266000	0.62562500	
Ν	-1.39416700	-1.77607900	1.82898900	
Ν	-1.39640200	1.77533300	-1.82533700	
Ν	0.76062300	-2.49743500	0.70754800	
Ν	0.76012700	2.49729700	-0.70829700	
Ν	0.76225000	-0.63587400	2.51588000	
Ν	0.76190500	1.86095600	1.80756800	
Ν	2.91268900	0.67657300	2.38569900	
Ν	2.91155500	2.40790300	0.60631400	
Ν	2.91209900	-1.73071700	1.77867200	
Ν	2.90965900	1.73042500	-1.78243100	
Ν	-0.46433900	-0.00045400	0.00401700	
С	0.70274400	0.00034400	-0.00499600	
Li	-2.31590700	-0.00875300	-0.02568800	
Li	2.78101300	0.00372800	0.01729100	
В	-0.67485000	-1.76277900	-1.71136300	