Investigation of Carbon Nanotube Webs as Novel Material for Counter Electrodes in a New Organic Electrolyte Based Dye Sensitized Solar Cell

Dalal Noureldine,^a Tharallah Shoker,^a Mustafa Musameh^b and Tarek H. Ghaddar^a*

Supporting Information

Figure S1: Relative absorption spectra of 1.0 M 1-methyl-3-propyl imidazolium iodide and .15 M I_2 in acetonitrile (solid-black), and 1.0 M T and 0.15 M DT in acetonitrile (dotted-red).

Figure S2: Cyclic voltammogram of T/DT electrolyte in acetonitrile with 0.1 M TBAPF₆.

Figure S2: Photograph of a drawn film of MWCNT webs from an MWCT forest grown on a ceramic substrate.

Figure S3: Photograph of a counter electrode prepared with 20 layers of MWCNT webs on an FTO substrate.

Figure S4: Photocurrent-voltage (*J-V*) curves of device E with 20 layers of MWCNT webs as the counter electrode (solid-black), and a device made with commercial MWCNT. Measured under 100 mW.cm⁻² simulated AM1.5 spectrum with an active area = 0.126 cm^2 and a spacer thickness $l = 60 \text{ }\mu\text{m}$.