Supplementary Information

Proton conduction in non-doped and acceptor-doped metal pyrophosphate (MP₂O₇) composite ceramics at intermediate temperatures

Yousuke Sato,^a Yanbai Shen,^a Masakazu Nishida,^b Wataru Kanematsu,^b and Takashi Hibino^{*a}

^aGraduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan

^bResearch Institute Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan

E-mail: hibino@urban.env.nagoya-u.ac.jp; Telephone: +81-52-789-4888; Fax: +81-52-789-4894

³¹P MAS NMR spectra of non-doped and acceptor-doped MP₂O₇-MO₂

Figure S1 shows ³¹P MAS NMR spectra of non-doped and acceptor-doped $MP_2O_7-MO_2$. These spectra were measured at room temperature, where the chemical shift value was referenced to H_3PO_4 . In the NMR spectra of $SnP_2O_7-SnO_2$, $ZrP_2O_7-ZrO_2$, and Sm-doped $SnP_2O_7-SnO_2$, the peaks attributable to MP_2O_7 appeared between -30 and -60 ppm, which means that the reaction between MO_2 and H_3PO_4 is based on the formation of chemical bonds. In contrast, in the NMR spectra of $TiP_2O_7-TiO_2$ and $SiP_2O_7-SiO_2$, significantly large peaks ascribed to the orthophosphate group (PO_4^{3+}) at approximately 0 ppm were observed in addition to the peaks assigned to MP_2O_7 . It is thus confirmed that a part of H_3PO_4 remains unreacted in the two samples.

Figure S1

Relationships between the electrical conductivity and the Sm³⁺ content at various temperatures.

Figure S2 shows that the proton conductivity monotonously increased with increasing Sm content, indicating that there is no percolation phenomenon for Sm^{3+} dosage.

Figure S2