Luminescence and Energy Transfer of a Color Tunable Phosphor: Dy³⁺-, Tm³⁺-, and Eu³⁺-Coactivated KSr₄(BO₃)₃ for Warm White UV LEDs

Li Wu^{*}^a, Yi Zhang^{*}^b, Mingyuan Gui^a, Pengzhi Lu^c, Lixia Zhao^c, Shu Tian^a, Yongfa Kong^a, Jingjun Xu^a

Supplementary Information

Table S1. Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters (Å²) for K(Sr, M)₄(BO₃)₃ (M=Dy, Tm)

	Site	<i>x</i>	у	z	Ueq	Occupancy
			K(Sr _{0.98} Dy _{0.02})) ₄ (BO ₃) ₃		
Sr1	4b	0.25	0.3555(1)	0.0624(1)	0.0113(1)	1.0000
Sr2	8c	-0.0281(1)	0.2145(1)	0.9294(1)	0.0107(1)	0.960(1)
Dy	8c	-0.0281(1)	0.2145(1)	0.9294(1)	0.0107(1)	0.040(1)
Sr3	4a	0	0	0.2829	0.0127(1)	1.0000
К	4b	0.25	0.5840(1)	0.3278(3)	0.0407(5)	1.0000
01	4b	0.25	0.3492(1)	0.4495(3)	0.0086(5)	1.0000
O2	4b	0.25	0.5633(1)	0.9074(3)	0.0211(5)	1.0000
O3	8c	0.1371(1)	0.6720(1)	0.6699(1)	0.0041(3)	1.0000
O4	8c	0.0289(1)	0.4026(1)	0.1081(2)	0.0034(3)	1.0000
05	8c	0.8575(1)	0.1943(1)	0.2384(2)	0.0055(3)	1.0000
O6	4a	0	0.5	0.4074(4)	0.0138(6)	1.0000
B1	4b	0.25	0.6377(3)	0.7550(6)	0.0185(10)	1.0000
B2	4b	0.25	0.3362(3)	0.6516(5)	0.0037(9)	1.0000
B3	4a	0	0.5	0.2118(6)	0.0233(10)	1.0000
			K(Sr0.985Tm0.01	5)4(BO3)3	. ,	
Sr1	4b	0.25	0.3553(1)	0.0643(1)	0.0115(1)	1.0000
Sr2	8c	-0.0284(1)	0.2148(1)	0.9312(1)	0.0098(1)	0.9732(7)
Tm	8c	-0.0284(1)	0.2148(1)	0.9312(1)	0.0098(1)	0.0267(7)
Sr3	4a	0	0	0 2829	0.0119(1)	1.0000
ĸ	4h	0.25	0 5838(1)	0.3310(3)	0.0281(5)	1.0000
01	40 /h	0.25	0.3030(1) 0.3472(1)	0.4515(3)	0.0082(5)	1.0000
02	40 /h	0.25	0.5472(1)	0.9117(3)	0.0171(5)	1.0000
03	40	0.1364(1)	0.5034(1)	0.5117(3)	0.0068(4)	1 0000
04	80	0.1304(1)	0.0727(1)	0.0088(1)	0.0053(3)	1,0000
04	80	0.0292(1)	0.4032(1)	0.1000(2)	0.0063(4)	1,0000
05	40	0.8575(1)	0.1938(1)	0.2393(2)	0.0084(6)	1.0000
00 D1	4a	0.25	0.5	0.4070(4)	0.0135(9)	1.0000
BI	40	0.25	0.6415(3)	0.7552(6)	0.0135(7)	1.0000
B2	40	0.25	0.3308(3)	0.6470(6)	0.0099(10)	1.0000
B3	4a	0	0.5 K/Cr Dr. Tr.	0.2082(6)	0.0208(10)	1.0000
C1	41.	0.25	$K(Sr_{0.985}Dy_{0.01}Tm)$	$0.005)_4(BO_3)_3$	0.0121(1)	1 0000
511	40	-0.0282(1)	0.3330(1) 0.2147(1)	0.0029(1)	0.0121(1)	0.976(1)
Sr2	8C	-0.0282(1)	0.2147(1)	0.9304(1)	0.0106(1)	0.014(1)
Dy1 T	8C	-0.0282(1)	0.2147(1)	0.9304(1)	0.0106(1)	0.014(1)
Im	8C	-0.0282(1)	0.2147(1)	0.9304(1)	0.0100(1)	0.010(1)
Sr3	4a	0	0	0.2829	0.0116(1)	0.964(1)
Dy2	4b	0.25	0 5924(1)	0.2629	0.0110(1)	1.0000
K	4b	0.25	0.5834(1)	0.3262(3)	0.0332(4)	1.0000
01	4b	0.25	0.5489(1)	0.4480(3)	0.0122(4)	1.0000
02	8c	0.25	0.5569(1)	0.9100(3)	0.0286(4)	1.0000
03	8c	0.1379(1)	0.6712(1)	0.6709(1)	0.0064(3)	1.0000
04	8c	0.0277(1)	0.4040(1)	0.1093(2)	0.0058(2)	1.0000
05	4a	0.8572(1)	0.1927(1)	0.2382(1)	0.0119(3)	1.0000
O6	4b	0	0.5	0.4025(3)	0.0047(4)	1.0000
B1	4b	0.25	0.6352(3)	0.7633(5)	0.0173(8)	1.0000
B2	4a	0.25	0.3308(2)	0.6472(4)	0.0045(7)	1.0000
B3	4b	0	0.5	0.2032(5)	0.0214(8)	1.0000

Table S2. Selected Interatomic Distances ((Å) and Angles (deg) for K(Sr, M) ₄ (BO ₃) ₃ (M	=Dy, Tm)
--	---	----------

$S_{r}(1) O(1)^{i}$	2666(2)	$K(Sr_{0.98}Dy_{0.02})_{40}$	$BO_3)_3$	$\mathbf{P}(1) \mathbf{O}(2)^{i}$	1 422(2
Sr(1) = O(1)	2.000(2)	Sr(3) = O(2)	2.9812(7)	B(1) = O(3)	1.455(2
$Sr(1) = O(2)^{n}$	2.708(2)	$Sr(3) = O(3)^{1}$	2.6/1(1)	$B(1) = O(3)^{i}$	1.433(2
$Sr(1) = O(3)^{v}$	2.633(1)	$Sr(3) = O(3)^{m}$	2.6/1(1)	$B(2) = O(1)^{2}$	1.399(4
$Sr(1) = O(3)^{11}$	2.633(1)	$Sr(3) = O(4)^{1}$	2.545(1)	$B(2) = O(5)^{VIII}$	1.375(2
$Sr(1) = O(4)^{2}$	2.5185(9)	$Sr(3) = O(4)^{m}$	2.545(1)	$B(2) = O(5)^{1/1}$	1.375(2
$Sr(1) = O(4)^{n}$	2.5185(9)	$Sr(3) = O(5)^{iv}$	2.824(1)	$B(3) = O(4)^{1}$	1.405(2
$Sr(1) = O(5)^{VIII}$	2.595(1)	$Sr(3) = O(5)^{1/2}$	2.824(1)	$B(3) = O(4)^{i}$	1.405(2
$Sr(1) = O(5)^{m}$	2.595(1)	$Sr(3) = O(6)^{1}$	2.585(2)	$B(3) = O(6)^{2}$	1.346(4
$Sr(2)(Dy)=O(1)^{in}$	2.5636(8)	K-O(1) ²	2.935(2)	$O(2)^{-}B(1)-O(3)^{-}$	119.79(2
Sr(2) (Dy)–O(3) ^N	2.546(1)	$K = O(2)^{i}$	2.905(3)	$O(2)^{i}-B(1)-O(3)^{ii}$	119.79(2
Sr(2) (Dy)–O(3) ^v	2.512(1)	K–O(3) ⁴	2.863(2)	$O(3)^{i}-B(1)-O(3)^{ii}$	120.15(2
Sr(2) (Dy)–O(4) ⁱ	2.643(1)	K–O(3) ⁿ	2.863(2)	$O(1)^{i}-B(2)-O(5)^{vii}$	117.48(2
Sr(2) (Dy)–O(4) ^{vin}	2.619(1)	K-O(5) ^m	2.973(2)	$O(1)^{i}-B(2)-O(5)^{viti}$	117.48(2
$Sr(2) (Dy) - O(5)^{i}$	2.484(1)	K-O(5) ^{IV}	2.973(2)	$O(5)^{vn} - B(2) - O(5)^{vm}$	118.75(2
Sr(2) (Dy)–O(5) ^{vm}	2.539(1)	$K-O(6)^{i}$	2.9816(10)	$O(4)^{i}-B(3)-O(4)^{iv}$	118.93(2
Sr(2) (Dy)–O(6) ^v	2.5935(6)	$K-O(6)^n$	2.9816(10)	$O(4)^{i}-B(3)-O(6)^{i}$	120.54(2
$Sr(3) - O(2)^{v}$	2.9812(7)	$B(1)-O(2)^{1}$	1.377(4)	$O(4)^{iv}-B(3)-O(6)^{i}$	120.54(2
		K(Sr _{0.975} Tm _{0.015}).	(BO ₃) ₃		
$Sr(1)-O(1)^{i}$	2.669(2)	$Sr(3)-O(2)^{vn}$	3.0015(8)	$B(1) - O(3)^{i}$	1.436(2
$Sr(1) - O(2)^{1}$	2.729(1)	$Sr(3)-O(3)^{v}$	2.678(1)	$B(1)-O(3)^{n}$	1.436(2
$Sr(1) - O(3)^{v}$	2.624(1)	$Sr(3) - O(3)^{vm}$	2.678(1)	$B(2)-O(1)^{1}$	1.361(4
$Sr(1)-O(3)^{vi}$	2.624(1)	$Sr(3)-O(4)^{v}$	2.548(1)	B(2)–O(5) ^{vii}	1.382(2
$Sr(1) - O(4)^{i}$	2.5212(9)	$Sr(3)-O(4)^{viii}$	2.548(1)	B(2)–O(5) ^{viii}	1.382(2
$Sr(1)-O(4)^{ii}$	2.5212(9)	$Sr(3) - O(5)^{i}$	2.842(1)	$B(3)-O(4)^{i}$	1.386(2
$Sr(1)-O(5)^{vii}$	2.606(1)	$Sr(3)-O(5)^{iv}$	2.842(1)	$B(3) - O(4)^{iv}$	1.386(2
$Sr(1)-O(5)^{viii}$	2.606(1)	$Sr(3) - O(6)^{v}$	2.585(2)	$B(3) - O(6)^{i}$	1.373(5
$Sr(2)(Tm)-O(1)^{vii}$	2.5586(8)	$K-O(1)^i$	2.956(2)	$O(2)^{i}-B(1)-O(3)^{i}$	118.96(2
Sr(2) (Tm)–O(3) ^{iv}	2.550(1)	$K-O(2)^i$	2.897(3)	$O(2)^{i}-B(1)-O(3)^{ii}$	118.96(2
Sr(2) (Tm)–O(3) ^v	2.499(1)	$K-O(3)^i$	2.850(2)	$O(3)^{i}-B(1)-O(3)^{ii}$	121.43(2
Sr(2) (Tm)–O(4) ⁱ	2.646(1)	K-O(3) ⁱⁱ	2.850(2)	O(1) ⁱ -B(2)-O(5) ^{vii}	119.23(3
Sr(2) (Tm)–O(4) ^{viii}	2.633(1)	K-O(5) ⁱⁱⁱ	2.964(2)	O(1) ⁱ –B(2)–O(5) ^{viii}	119.23(3
Sr(2) (Tm)–O(5) ⁱ	2.478(1)	$K-O(5)^{iv}$	2.964(2)	O(5) ^{vii} –B(2)–O(5) ^{viii}	118.06(2
Sr(2) (Tm)–O(5) ^{viii}	2.541(1)	$K-O(6)^i$	2.9825(9)	$O(4)^{i}-B(3)-O(4)^{iv}$	120.76(2
Sr(2) (Tm)–O(6) ^v	2.6003(5)	K-O(6) ⁱⁱ	2.9825(9)	$O(4)^{i}$ -B(3)-O(6) ⁱ	119.62(3
$Sr(3) - O(2)^{v}$	3.0015(8)	B(1)–O(2) ⁱ	1.413(4)	$O(4)^{iv} - B(3) - O(6)^{i}$	119.62(3
		K(Sr _{0.985} Dy _{0.01} Tm _{0.0}	$_{05})_4(BO_3)_3$		
$Sr(1) - O(1)^{i}$	2.653(2)	Sr(3)(Dy) –O(2) ^{vii}	2.9727(7)	B(1)–O(3) ⁱ	1.456(2
$Sr(1) - O(2)^{i}$	2.640(1)	$Sr(3)(Dy) - O(3)^{v}$	2.668(1)	B(1)–O(3) ⁱⁱ	1.456(2
$Sr(1) - O(3)^{v}$	2.635(1)	Sr(3)(Dy)–O(3) ^{viii}	2.668(1)	B(2)–O(1) ⁱ	1.389(3
Sr(1)-O(3) ^{vi}	2.635(1)	$Sr(3)(Dy) - O(4)^{v}$	2.544(1)	B(2)-O(5) ^{vii}	1.368(2
$Sr(1) - O(4)^{i}$	2.5411(8)	Sr(3)(Dy)–O(4) ^{viii}	2.544(1)	B(2)–O(5) ^{viii}	1.368(2
Sr(1)–O(4) ⁱⁱ	2.5411(8)	$Sr(3)(Dy)-O(5)^{i}$	2.813(1)	$B(3)-O(4)^{i}$	1.355(1
Sr(1)-O(5) ^{vii}	2.594(1)	Sr(3)(Dy)-O(5) ^{iv}	2.813(1)	B(3)-O(4) ^{iv}	1.355(1
$Sr(1)-O(5)^{viii}$	2.594(1)	$Sr(3)(Dy) - O(6)^{v}$	2.620(2)	B(3)–O(6) ⁱ	1.373(3
Sr(2)(Dy,Tm)–O(1) ^{vii}	2.5651(7)	$K-O(1)^{i}$	2.935(2)	$O(2)^{i}-B(1)-O(3)^{i}$	121.48(2
Sr(2)(Dy,Tm)–O(3) ^{iv}	2.555(1)	$K-O(2)^{i}$	2.884(2)	$O(2)^{i}-B(1)-O(3)^{ii}$	121.48(2
$Sr(2)(Dy,Tm)-O(3)^{v}$	2.525(1)	$K-O(3)^i$	2.876(2)	$O(3)^{i}-B(1)-O(3)^{ii}$	116.21(2
Sr(2)(Dy,Tm)–O(4) ⁱ	2.655(1)	K-O(3) ⁱⁱ	2.876(2)	O(1) ⁱ –B(2)–O(5) ^{vii}	118.97(2
Sr(2)(Dy,Tm)–O(4) ^{viii}	2.630(1)	K–O(5) ⁱⁱⁱ	2.995(2)	$O(1)^{i}-B(2)-O(5)^{viii}$	118.97(2
$Sr(2)(Dv,Tm) - O(5)^{i}$	2.482(1)	$K-O(5)^{iv}$	2.995(2)	$O(5)^{vii}-B(2)-O(5)^{vii}$	119.700
$Sr(2)(Dv.Tm)-O(5)^{viii}$	2.557(1)	$K = O(6)^{i}$	2.9804(7)	$O(4)^{i}-B(3)-O(4)^{iv}$	122.99(
$Sr(2)(Dy,Tm) = O(6)^{v}$	2.6012(4)	$K = O(6)^{ii}$	2.9804(7)	$O(4)^{i} - B(3) - O(6)^{i}$	118 500
(-)(-),) 0(0)			=		110.00(2

Figure S1. PL Spectra of KSr₄(BO₃)₃:0.01Dy³⁺, 0.005Tm³⁺, xEu³⁺ phosphors.

Figure S2. PL Spectra of $KSr_4(BO_3)_3$: $0.015Dy^{3+}$, $0.005Tm^{3+}$, xEu^{3+} phosphors.

Figure S3. PL Spectra of KSr₄(BO₃)₃:0.015Dy³⁺, 0.005Tm³⁺, 0.02Eu³⁺, 0.04Na⁺ phosphor.

Figure S4. PL Spectra of $KSr_4(BO_3)_3: 0.015Dy^{3+}, 0.005Tm^{3+}, 0.002Eu^{3+}, 0.022K^+$ phosphor.

Figure S5. Photographs of a 368 nm UV LED chip (left) and the chip coated with KSr₄(BO₃)₃:0.015Dy³⁺, 0.005Tm³⁺, 0.02Eu³⁺ (right).

 $Figure \ S6. \ EL \ spectrum \ of \ the \ KSr_4(BO_3)_3: 0.015 Dy^{3+}, \ 0.005 Tm^{3+}, \ 0.02 Eu^{3+} \ phosphor \ coated \ on \ a \ 368 \ nm \ UV \ chip.$