Supplementary Information for:

Luminescence Properties of Nd³⁺-doped LaF₃ Nanocrystals with a Long Lifetime in Organic Solvents

Wenxiu Sun,^a Xiaoxia Cui,^b Zhongyue Wang,^a Wei Wei*^{a,b} and Bo Peng*^{a,b}

^aInstitute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, P.R. China.

^bState Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS) Xi'an Shaanxi 710119, P.R. China.

Judd-Ofelt calculation

Fig. S1 Absorption spectrum of LaF₃:Nd nanocrystals in DMSO/tetrabromoethane.

Fig. S1 shows the room temperature absorption spectrum of LaF₃:Nd (3 mol%) nanocrystals in DMSO/tetrabromoethane, which was measured on a Unico UV-2000 scanning spectrophotometer. There are five transitions corresponding to transitions from ${}^{4}I_{9/2}$ ground state manifold to various excited states. Based on the absorption spectrum, the experimental oscillator strengths (*f_{exp}*) of each electronic transition of Nd³⁺ can be evaluated by the following expression ¹:

$$f_{\rm exp} = \frac{mc^2}{\pi e^2 N \lambda^2} \int \alpha(\lambda) d\lambda \qquad (1)$$

Where m and e are electron mass and charge, c is the velocity of light, N is the

number density of Nd³⁺ ions, and α (λ) is the absorption coefficient. According to Judd–Ofelt theory, the calculated oscillator strengths (f_{cal}) of electronic transitions from the ground state (aJ) level to the excited state (bJ') level are given by the equation²:

$$f_{cal}(aJ,bJ') = \frac{8\pi^2 mc}{3h\lambda(2J+1)} \frac{\left(n^2 + 2\right)^2}{9n} \sum_{t=2,4,6} \Omega_t \left| \left\langle aJ \right| \left| U^{(t)} \right| \left| bJ' \right\rangle \right|^2$$
(2)

Where *n* is the refractive index of the host, *h* is the Planck constant, 2J + I is the degeneracy of the ground state. $|\langle aJ || U(t) || bJ' \rangle|^2$ represents the reduced matrix elements that are insensitive to the local environment, and those values for Nd³⁺ ions in LaF₃ given by *Carnall et al* were used in the calculations ^{3, 4}. The values of the three Judd-Ofelt parameters $\Omega_{t (2, 4, 6)}$ were provided by a least-squares fitting of f_{exp} to f_{cal} . According to the Judd-Ofelt formulae described, measured oscillator strengths (f_{exp}), calculated oscillator strengths (f_{cal}) and Judd-Ofelt parameters Ω_t of LaF₃:Nd nanocrystals were determined. (Listed in Table S1)

Electronic	Absorption	Absorption	Oscillator	Oscillator	
transition	peak	coefficient	strength	strength	
$(\text{from}^{4}\text{I}_{9/2})$	(nm)	$\int \alpha(\lambda) d\lambda(10^{-7})$	$f_{exp}(10^{-6} \text{ cm}^2)$	$f_{cal}(10^{-6} \text{ cm}^2)$	
${}^{4}G_{7/2} + {}^{4}G_{9/2} + {}^{2}K_{13/2}$	520	5.0182	1.65721	2.24068	
${}^{4}G_{5/2} + {}^{2}G_{7/2}$	578	14.1402	3.77952	5.37280	
${}^{4}F_{7/2} + {}^{4}S_{3/2}$	732	15.62548	2.60404	3.60157	
${}^{4}F_{5/2} + {}^{4}H_{9/2}$	789	15.68613	2.25009	3.33696	
${}^{4}F_{3/2}$	863	6.08722	0.72985	0.97020	
$\Omega_2(\times 10^{-20}\text{cm}^2)$	0.81				
$\Omega_4 (\times 10^{-20} \text{ cm}^2)$	1.78				
$\Omega_6 ~(\times 10^{-20}~{ m cm}^2)$		2.4	7		

Table S1 Observed absorption peak positions, integrated absorption coefficient, measured oscillator strengths (f_{exp}), calculated oscillator strengths (f_{cal}) and Judd-Ofelt parameters of the

^{*a*}Based on absorption data from LaF₃:Nd (3 mol%).

From the Judd–Ofelt parameters Ω_t obtained above, the radiative transition rates for

electronic dipole transitions between an excited state and the lower lying levels can be calculated by the following equation ⁵:

$$A(aJ, bJ') = \frac{64\pi^4 e^2 n^2 \chi}{3h\lambda^3 (2J+1)} \sum_{t=2,4,6} \Omega_t \left| \left\langle 4f^N aJ \right| U^{(t)} \left| 4f^N bJ' \right\rangle \right|^2$$
(3)

The radiative lifetime of the ${}^{4}F_{3/2}$ state is related to the radiative decay rate through following formula ⁶:

$$\tau_{r}(a) = \frac{1}{A_{ed}(a)} = \frac{1}{\sum_{b} A_{ed}(ab)}$$
(4)

The quantum efficiency (φ) of the emission bands can be evaluated from the following function ⁷:

$$\varphi = \frac{\tau_{mea}}{\tau_{rad}} \qquad (5)$$

The emission spectra of LaF₃:Nd nanocrystals shows three emission bands centered at 880, 1060, and 1330 nm. The fluorescence branching ratios of these bands, radiative transition probability (A_{rad}) between the excited states, and radiative lifetime of an emitting state were presented in Table S2.

Table S2 Observed emission bands, their measured and calculated radiative properties of LaF₃:Nd^a

Transition from $F_{3/2}$	Wavelength (nm)	$A_{rad}(s^{-1})$	$\beta_{exp}(\%)$	$\tau_{cal}(\mu s)$
${}^{4}I_{13/2}$	1323	511.037	38.49	753
${}^{4}I_{11/2}$	1057	674.332	50.78	
${}^{4}F_{9/2}$	863	142.498	10.73	

^{*a*}Based on emission data from LaF₃:Nd (3 mol%, sample F4).

To compute the quantum efficiency, measured lifetime data was confirmed by the radiative lifetime: In this work, a lifetime of 359 μ s was measured for the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition of LaF₃:Nd nanocrystals dispersed in DMSO/tetrabromoethane. According to the function (5), the emission quantum yield is deduced to be as high as 47.7 %.

References

- 1 H. Lin, E. Y. B. Pun, S. Q. Man and X. R. Liu, J. Opt. Soc. Am. B, 2001, 18, 602.
- 2 S. T. Tanabe, T. Ohyagi, N. Soga and T. Hanada, Phys. Rev. B, 1992, 46, 3305.
- 3 W. T. Carnall, P. R. Fields and B. G. Wybourne, J. Chem. Phys., 1965, 42, 3797.
- 4 W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys., 1968, 49, 4412.
- 5 X. X. Cui, J. B. Lu, C. Gao, C. Q. Hou, W. Wei and B. Peng, Appl. Phys. A, 2011, 103, 27.
- 6 G. A. Kumar, A. Martinez and E. D. L. Rosa, J. Lumin., 2002, 99, 141.
- 7 G. A. Kumar, C. W. Chen and R. E. Riman, J. Nanosci. Nanotechnol., 2008, 8, 6558.