Stabilization of the blue phases of simple rodlike monoester compounds by addition of their achiral homologues

Keiki Kishikawa,* Hiroyuki Itoh, Seiji Akiyama, Takahiro Kobayashi, and Shigeo Kohmoto

Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Expermental

A typical procedure for synthesis of esters (synthesis of 1). 4-(4-(R)-1-Methylheptyloxy-phenyl)benzoic acid (8) and <math>4-(4-(R)-1-methylheptyloxyphenyl)phenol (9) were obtained by Mitsunobu reaction of (S)-1-methylheptanol with 4-(4-hydroxyphenyl)-benzoic acid and 4,4'-biphenol, respectively. Reaction of 8 with thionyl chloride gave 4-(4-(R)-1-methylheptyloxyphenyl)benzoyl chloride (10).

Into a three-necked 100mL-round bottom flask were added **10** (145 mg, 0.420 mmol), **9** (133 mg, 0.446 mmol), 4-(dimethylamino)pyridine (5 mg, 0.04 mmol), dichloromethane (30 mL), and triethylamine (0.12 mL, 0.90 mmol). The solution was stirred for 24 h at room temperature. Distilled water (50 mL) was added and the solution was extracted with chloroform (100mL \times 4). The solution was dried over anhydrous magnesium sulfate, filtrated with suction, and concentrated by a rotary evaporator. The crude mixture was separated by column chromatography on silica gel eluting with chloroform-hexane (1:5) to give a white solid (1).

4-(4-(*R***)-1-Methylheptyloxyphenyl)phenyl 4-(4-(***R***)-1-methyl-heptyloxyphenyl)benzoate (1). Yield: 41%; v_{max}(KBr)/cm⁻¹ 2929, 2856, 1733, 1496, 1466, 1376, 1079, 830, 723; \delta_{H}(400 MHz; CDCl₃; Me₄Si) 0.82 (t,** *J* **= 6.7 Hz, 6H), 1.18-1.44 (m, 20H), 1.48-1.56 (m, 4H), 1.66-1.70 (m, 2H), 4.33 (sex,** *J* **= 6.0, 1H), 4.38 (sex,** *J* **= 6.0 Hz, 1H), 6.89 (d,** *J* **= 8.7 Hz, 2H), 6.92 (d,** *J* **= 8.6 Hz, 2H), 7.20 (d,** *J* **= 8.7 Hz, 2H), 7.44 (d,** *J* **= 8.7 Hz, 2H), 7.52 (d,** *J* **= 8.6 Hz, 4H), 7.62 (d,** *J* **= 8.5 Hz, 2H), 8.20 (d,** *J* **= 8.6 Hz, 2H); \delta_{C}(99.45 MHz; CDCl₃; Me₄Si) 14.1, 19.8, 22.6, 25.6, 29.3, 31.8, 36.5, 74.0, 108.2, 116.1, 116.2, 121.6, 126.6, 127.5, 127.7, 128.2, 128.4, 130.7, 131.8, 132.7, 138.7, 146.0, 149.9, 157.9, 158.7; HRMS (FAB) 606.3698 (M⁺. C₄₁H₅₀O₄ requires 606.3709); [\alpha]_{D}^{27} -2.61 (c 0.114 in CHCl₃).**

4-(4-(*R***)-1-Methylheptyloxyphenyl)phenyl 4-(4-octyloxy-phenyl)benzoate (2).** Yield 30%; $v_{max}(KBr)/cm^{-1}$ 2923, 2853, 1729, 1496, 1474, 1376, 1074, 826, 720; $\delta_{H}(400 \text{ MHz; CDCl}_{3}; \text{ Me4Si})$ 0.88 (t, *J* = 6.7 Hz, 3H), 0.91 (t, *J* = 6.7 Hz, 3H), 1.30-1.48 (m, 18H), 1.55-1.62 (m, 4H), 1.73-1.86 (m, 3H), 4.02 (t, *J* = 6.5 Hz, 2H), 4.40 (sex, *J* = 6.0 Hz, 1H), 6.96 (d, *J* = 8.7 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 7.27 (d, *J* = 8.7 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H), 8.25 (d, *J* = 8.6 Hz, 2H); $\delta_{C}(99.45 \text{ MHz; CDCl}_{3}; \text{ Me4Si})$ 14.1, 19.8, 22.6, 25.6, 29.2, 29.3, 29.4, 31.8, 68.2, 115.0, 116.1, 121.9, 126.6, 127.5, 127.7, 128.1, 128.3, 130.7, 132.0, 132.6, 138.7, 157.9; HRMS (FAB) 606.3659 (M⁺. C₄₁H₅₀O₄ requires 606.3709); $[\alpha]_{D}^{27}$ -1.34 (c 0.149 in CHCl₃).

4-(4-Octyloxyphenyl)phenyl 4-(4-octyloxyphenyl)benzoate (3). Yield 38%; v_{max} (KBr)/cm⁻¹ 2921, 1733, 1498, 1474, 1396, 1085, 834, 721; δ_{H} (400 MHz; CDCl₃; Me₄Si) 0.85 (t, J = 7.1 Hz, 6H), 1.30-1.48 (m, 18H), 1.53-1.59 (m, 4H), 1.79-1.84 (m, 2H), 4.00 (t, J = 6.6 Hz, 2H), 4.02 (t, J = 6.6 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H), 7.52 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.2 Hz, 2H), 8.25 (d, J = 8.2 Hz, 2H); δ_{C} (99.45 MHz; CDCl₃; Me₄Si) 14.1, 22.7, 26.0, 28.5, 29.3, 29.4, 31.8, 68.1, 105.2, 114.8, 115.0, 116.5, 121.9, 126.6, 127.7, 128.1, 128.4, 130.7, 132.0, 132.7, 149.9, 156.0, 158.8; HRMS (FAB) 606.3676 (M⁺. C₄₁H₅₀O₄ requires 606.3709).

4-(4-(*R***)-1-Methylheptyloxyphenyl)phenyl 4-phenylbenzoate (4).** Yield 55%; v_{max} (KBr)/cm⁻¹ 2928, 2856, 1742, 1604, 1496, 1288, 1272, 1227, 1082, 806, 741, 696; δ_{H} (400 MHz; CDCl₃; Me₄Si) 0.89 (t, *J* = 6.7 Hz, 3H), 1.29-1.47 (m, 10H), 1.56-1.61 (m, 2H), 1.74-1.77 (m, 1H), 4.39 (sex, *J* = 6.0 Hz, 1H), 6.96 (dd, *J* = 8.9, 1.2 Hz, 2H), 7.27 (dd, *J* = 8.9, 1.2 Hz, 2H), 7.39-7.51 (m, 5H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 8.5 Hz, 2H), 8.28 (d, *J* = 8.3 Hz, 2H); δ_{C} (99.45 MHz; CDCl₃; Me₄Si) 14.1, 19.8, 22.6, 25.5, 29.3, 31.8, 36.5, 74.0, 116.1, 121.9, 127.2, 127.3, 127.7, 128.1, 128.2, 128.3, 129.0, 130.7, 132.6, 138.7, 139.8, 146.3, 149.8, 157.9, 165.2; HRMS (FAB) 478.2489 (M⁺. C₃₃H₃₄O₃ requires 478.2508); $[\alpha]_{D}^{28.5}$ -2.25 (c 0.300 in CHCl₃).

Synthesis of 7. 4-(4-Octyloxyphenyl)benzyl chloride (11) was obtained by reaction of thionyl chloride and 4-(4-octyloxy-phenyl)benzyl alcohol which was prepared by alkylation of ethyl 4-(4-hydroxyphenyl)benzoate followed by reduction with LiAlH₄.

Into a three-necked 100mL-round bottom flask were added **9** (100 mg, 0.335 mmol), THF (30 mL), and sodium hydride (60% dispersion in paraffin liquid, 24 mg, 1.0 mmol), and the solution was stirred for 30 min. A solution of **11** (111 mg, 0.335 mmol) in THF (5mL) and tetrabutylammonium iodide (37 mg, 0.10 mmol) were added to the solution. The solution was stirred for 24 h at room temperature. Distilled water (50 mL) was added and the solution was extracted with chloroform (100mL \times 4). The solution was dried over anhydrous magnesium sulfate, filtrated with suction, and concentrated by a rotary evaporator. The crude mixture was separated by column chromatography on silica gel eluting with chloroform-hexane (1:1) to give a white solid (**7**).

4-(4-(*R***)-1-Methylheptyloxyphenyl)phenyl 4-(4-octyloxy-phenyl)methyl ether (7).** Yield 56%; $v_{max}(\text{KBr})/\text{cm}^{-1}$ 2921, 2852, 1500, 1465, 1379, 1049, 808, 722; $\delta_{\text{H}}(400 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 0.87 (t, J = 6.7 Hz, 3H), 0.90 (t, J = 6.7 Hz, 3H), 1.29-1.47 (m, 17H), 1.53-1.59 (m, 6H), 1.71-1.84 (m, 2H), 4.00 (t, J = 6.6 Hz, 2H), 4.37 (sex, J = 6.0 Hz, 1H), 5.12 (s, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 7.44-7.53 (m, 8H), 7.58 (d, J = 8.7 Hz, 2H); $\delta_{\text{C}}(99.45 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$ 14.1, 19.8, 22.7, 25.6, 26.1, 29.3, 29.4, 31.8, 36.5, 68.1, 73.3, 74.0, 114.8, 115.1, 116.1, 126.9, 127.7, 128.0, 128.1, 133.0, 133.8, 135.3, 157.4, 157.9; HRMS (FAB) 592.3911 (M⁺. C₄₁H₅₂O₃ requires 592.3916); $[\alpha]_{\text{D}}^{-2^{+}}$ +1.08 (c 0.369 in CHCl₃).

Polarized optical microphotographs

Figure 1S. Microphotograph of the blue phase of 1 on heating $(600\times, 151.0^{\circ}C)$.

Figure 2S. Microphotograph of the blue phase of 2 on heating $(600\times, 240.8^{\circ}C)$.

Figure 3S. Microphotograph of the chiral nematic phase of 2 on heating $(600\times, 239.0^{\circ}C)$.

Figure 4S. Microphotograph of the transition from the SmA phase to the TGBA phase of **2** on heating $(600\times, 232.5^{\circ}C)$.

Figure 5S. Microphotograph of the SmA phase of 2 on heating (600×, 225°C).

Figure 6S. Microphotograph of the SmC* phase of **2** on heating ($600 \times$, 180.0° C).

Figure 7S. Microphotograph of the blue phase of the mixture of **1** and **3** at the ratio of 1:1 on heating $(600\times, 229.0^{\circ}C)$.

Figure 8S. Microphotograph of the blue phase of the mixture of **1** and **6** at the ratio of 1:1 on heating $(600\times, 125.0^{\circ}C)$.

Figure 9S. Microphotograph of the TGBA phase of the mixture of **1** and **4** at the ratio of 1:1 on cooling $(600\times, 147.5^{\circ}C)$.

Mole fraction	Cr		SmC		N		BP		Iso
0.0	٠	96.3	٠	141.5	٠	165.0	•	166.6	•
0.1	•	99.0	•	147.1	•	177.3	•	179.4	•
0.2	•	101.0	•	157.8	•	192.6	•	195.0	•
0.3	•	101.6	•	163.5	•	204.4	•	207.7	•
0.4	•	102.3	•	190.9	•	240.3	•	245.3	•
0.5	•	103.4	•	186.5	•	250.6	•	254.9	•
0.6	•	106.0	•	176.1	•	253.4	•	256.4	•
0.7	•	109.5	•	178.0	•	256.0	•	258.0	•
0.8	•	138.4	•	209.5	•		-	252.8	•
0.9	•	153.3	•	258.1	•		-	282.8	•
1.0	•	159.4	•	269.4	•		-	269.4	•

Table S1. Phase transition temperatures of the mixtures of 1 and 3.^{*a*}

^{*a*} The temperature ranges were measured by POM. The heating and cooling rates are 0.1° C/min.

Mole fraction	Cr		SmC		Ν		BP		Iso
0.0	•	96.3	•	141.5	•	166.1	٠	167.7	•
0.1	•	88.5	•	131.0	•	156.5	•	157.7	•
0.2	•	71.1	•	125.1	•	151.0	•	152.1	•
0.3	•	52.3	•	121.9	•	148.4	•	149.5	•
0.4	•	42.8	•	120.3	•	146.2	•	147.3	•
0.5	•	37.0	•	97.6	•	132.6	•	133.6	٠
0.6	•	24.4	•	93.6	•	118.7	•	119.6	•
0.7	•	36.7	•	86.5	•		-	109.0	•
0.8	•	29.5	•	85.8	•		-	109.3	٠
0.9	•	28.8	•	79.8	•		-	100.1	•
1.0	•	63.3	•	76.4	•		-	94.4	•

Table S2. Phase transition temperatures of the mixtures of 1 and 6.^{*a*}

^{*a*} The temperature ranges were measured by POM. The heating and cooling rates are 0.1° C/min.

Selective refractions of the pure 1 (10:0) and the mixtures of 1 and 3 (9:1, 8:2, 7:3, 6:4, and 5:5). The selective refractions of the pure chiral compound 1 and the mixtures of 1 and achiral compound 3 were carried out by POM at T_{bp-N} -T = 5 (K) (T_{bp-N} : transition temperature of the BP and N) without the polarizers.

(f) 5:5 (red-no color)

Figure 10S. Selective reflections of the mixtures 1:3 against the molar ratios. Pure chiral compound 1 did not have color (a). The mixtures at 9:1 and 8:2 showed orange-red (b) and green-yellow (c), which indicated that the helical pitch became shorter by addition of achiral compound 3. However, the mixtures at 7:3 and 6:4 showed orange (d) and orange-red (c), and at 5:5 it exhibited pale red, which meant that the helical pitch become longer by addition of the achiral dopant.