Stabilization of the blue phases of simple rodlike monoester compounds by addition of their achiral homologues

Keiki Kishikawa,* Hiroyuki Itoh, Seiji Akiyama, Takahiro Kobayashi, and Shigeo Kohmoto
Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Expermental

A typical procedure for synthesis of esters (synthesis of 1). 4-(4-(R)-1-Methylheptyloxyphenyl)benzoic acid (8) and 4-(4-(R)-1-methylheptyloxyphenyl)phenol (9) were obtained by Mitsunobu reaction of (S)-1-methylheptanol with 4-(4-hydroxyphenyl)-benzoic acid and 4,4'-biphenol, respectively. Reaction of $\mathbf{8}$ with thionyl chloride gave $4-(4-(R)-1-$ methylheptyloxyphenyl)benzoyl chloride (10).
Into a three-necked 100 mL -round bottom flask were added $\mathbf{1 0}(145 \mathrm{mg}, 0.420 \mathrm{mmol}), \mathbf{9}(133 \mathrm{mg}, 0.446$ mmol), 4-(dimethylamino)pyridine ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$), dichloromethane (30 mL), and triethylamine ($0.12 \mathrm{~mL}, 0.90 \mathrm{mmol}$). The solution was stirred for 24 h at room temperature. Distilled water (50 mL) was added and the solution was extracted with chloroform ($100 \mathrm{~mL} \times 4$). The solution was dried over anhydrous magnesium sulfate, filtrated with suction, and concentrated by a rotary evaporator. The crude mixture was separated by column chromatography on silica gel eluting with chloroform-hexane (1:5) to give a white solid (1).

4-(4-(R)-1-Methylheptyloxyphenyl)phenyl 4-(4-(R)-1-methyl-heptyloxyphenyl)benzoate (1). Yield: $41 \% ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2929,2856,1733,1496,1466,1376,1079,830,723 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 0.82(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.18-1.44(\mathrm{~m}, 20 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.70(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{sex}, J$ $=6.0,1 \mathrm{H}), 4.38(\mathrm{sex}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(99.45 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 14.1, 19.8, 22.6, $25.6,29.3,31.8,36.5,74.0,108.2,116.1,116.2$, 121.6, 126.6, 127.5, 127.7, 128.2, 128.4, 130.7, 131.8, 132.7, 138.7, 146.0, 149.9, 157.9, 158.7; HRMS (FAB) $606.3698\left(\mathrm{M}^{+} . \mathrm{C}_{41} \mathrm{H}_{50} \mathrm{O}_{4}\right.$ requires 606.3709); $[\alpha]_{\mathrm{D}}{ }^{27}$-2.61 (c 0.114 in CHCl_{3}).

4-(4-(R)-1-Methylheptyloxyphenyl)phenyl 4-(4-octyloxy-phenyl)benzoate (2). Yield 30\%; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2923,2853,1729,1496,1474,1376,1074,826,720 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.88$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.48(\mathrm{~m}, 18 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.86(\mathrm{~m}, 3 \mathrm{H})$, $4.02(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{sex}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(99.45 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.1,19.8,22.6,25.6$, $29.2,29.3,29.4,31.8,68.2,115.0,116.1,121.9,126.6,127.5,127.7,128.1,128.3130 .7,132.0,132.6$, 138.7, 157.9; HRMS (FAB) $606.3659\left(\mathrm{M}^{+} . \mathrm{C}_{41} \mathrm{H}_{50} \mathrm{O}_{4}\right.$ requires 606.3709); $[\alpha]_{\mathrm{D}}{ }^{27}-1.34$ (c 0.149 in CHCl_{3}).

4-(4-Octyloxyphenyl)phenyl 4-(4-octyloxyphenyl)benzoate (3). Yield 38%; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2921, $1733,1498,1474,1396,1085,834,721 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.30-$ $1.48(\mathrm{~m}, 18 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.84(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(99.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$) $14.1,22.7,26.0,28.5,29.3,29.4,31.8,68.1,105.2,114.8,115.0,116.5,121.9,126.6,127.7$, 128.1, 128.4, 130.7, 132.0, 132.7, 149.9, 156.0, 158.8; HRMS (FAB) $606.3676\left(\mathrm{M}^{+} . \mathrm{C}_{41} \mathrm{H}_{50} \mathrm{O}_{4}\right.$ requires 606.3709).

4-(4-(R)-1-Methylheptyloxyphenyl)phenyl 4-phenylbenzoate (4). Yield 55%; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2928$, $2856,1742,1604,1496,1288,1272,1227,1082,806,741,696 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.89(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.47(\mathrm{~m}, 10 \mathrm{H}), 1.56-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.77(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{sex}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.96 (dd, $J=8.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=8.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.51$ (m, 5H), 7.59 (d, $J=8.5 \mathrm{~Hz}$, 2 H), 7.66 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(99.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$) 14.1, 19.8, 22.6, 25.5, 29.3, 31.8, 36.5, 74.0, 116.1, 121.9, 127.2, 127.3, 127.7, 128.1, 128.2, $128.3,129.0,130.7,132.6,138.7,139.8,146.3,149.8,157.9,165.2$; HRMS (FAB) $478.2489\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{3}$ requires 478.2508); $[\alpha]_{\mathrm{D}}{ }^{28.5}-2.25$ (c 0.300 in CHCl_{3}).

Synthesis of 7. 4-(4-Octyloxyphenyl)benzyl chloride (11) was obtained by reaction of thionyl chloride and 4-(4-octyloxy-phenyl)benzyl alcohol which was prepared by alkylation of ethyl 4-(4hydroxyphenyl)benzoate followed by reduction with LiAlH_{4}. Into a three-necked 100 mL -round bottom flask were added 9 ($100 \mathrm{mg}, 0.335 \mathrm{mmol}$), THF (30 mL), and sodium hydride (60% dispersion in paraffin liquid, $24 \mathrm{mg}, 1.0 \mathrm{mmol}$), and the solution was stirred for 30 min . A solution of $\mathbf{1 1}(111 \mathrm{mg}, 0.335 \mathrm{mmol})$ in THF (5 mL) and tetrabutylammonium iodide (37 mg , 0.10 mmol) were added to the solution. The solution was stirred for 24 h at room temperature. Distilled water (50 mL) was added and the solution was extracted with chloroform $(100 \mathrm{~mL} \times 4)$. The solution was dried over anhydrous magnesium sulfate, filtrated with suction, and concentrated by a rotary evaporator. The crude mixture was separated by column chromatography on silica gel eluting with chloroform-hexane (1:1) to give a white solid (7).

4-(4-(R)-1-Methylheptyloxyphenyl)phenyl 4-(4-octyloxy-phenyl)methyl ether (7). Yield 56\%; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2921,2852,1500,1465,1379,1049,808,722 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.87(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.47(\mathrm{~m}, 17 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.71-1.84(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{sex}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.53(\mathrm{~m}, 8 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta \mathrm{c}\left(99.45 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$) 14.1, 19.8, 22.7, 25.6, 26.1, 29.3, 29.4, 31.8, 36.5, 68.1, 73.3, 74.0, 114.8, 115.1, 116.1, 126.9, 127.7, 128.0, 128.1, 133.0, 133.8, 135.3, 157.4, 157.9; HRMS (FAB) $592.3911\left(\mathrm{M}^{+} . \mathrm{C}_{41} \mathrm{H}_{52} \mathrm{O}_{3}\right.$ requires 592.3916); $[\alpha]_{\mathrm{D}}{ }^{27}+1.08$ (c 0.369 in CHCl_{3}).

Polarized optical microphotographs

Figure 1S. Microphotograph of the blue phase of $\mathbf{1}$ on heating $\left(600 \times, 151.0^{\circ} \mathrm{C}\right)$.

Figure 2S. Microphotograph of the blue phase of $\mathbf{2}$ on heating $\left(600 \times, 240.8^{\circ} \mathrm{C}\right)$.

Figure 3S. Microphotograph of the chiral nematic phase of 2 on heating $\left(600 \times, 239.0^{\circ} \mathrm{C}\right)$.

Figure 4S. Microphotograph of the transition from the SmA phase to the TGBA phase of 2 on heating $\left(600 \times, 232.5^{\circ} \mathrm{C}\right)$.

Figure 5S. Microphotograph of the SmA phase of 2 on heating $\left(600 \times, 225^{\circ} \mathrm{C}\right)$.

Figure 6S. Microphotograph of the SmC^{*} phase of 2 on heating $\left(600 \times, 180.0^{\circ} \mathrm{C}\right)$.

Figure 7S. Microphotograph of the blue phase of the mixture of $\mathbf{1}$ and $\mathbf{3}$ at the ratio of $1: 1$ on heating $\left(600 \times, 229.0^{\circ} \mathrm{C}\right)$.

Figure 8S. Microphotograph of the blue phase of the mixture of $\mathbf{1}$ and $\mathbf{6}$ at the ratio of $1: 1$ on heating $\left(600 \times, 125.0^{\circ} \mathrm{C}\right)$.

Figure 9S. Microphotograph of the TGBA phase of the mixture of $\mathbf{1}$ and $\mathbf{4}$ at the ratio of $1: 1$ on cooling ($600 \times, 147.5^{\circ} \mathrm{C}$).

Table S1. Phase transition temperatures of the mixtures of $\mathbf{1}$ and $\mathbf{3}$. ${ }^{a}$

Mole fraction	$C r$		$S m C$		N		BP		Iso
0.0	\bullet	96.3	\bullet	141.5	\bullet	165.0	\bullet	166.6	\bullet
0.1	\bullet	99.0	\bullet	147.1	\bullet	177.3	\bullet	179.4	\bullet
0.2	\bullet	101.0	\bullet	157.8	\bullet	192.6	\bullet	195.0	\bullet
0.3	\bullet	101.6	\bullet	163.5	\bullet	204.4	\bullet	207.7	\bullet
0.4	\bullet	102.3	\bullet	190.9	\bullet	240.3	\bullet	245.3	\bullet
0.5	\bullet	103.4	\bullet	186.5	\bullet	250.6	\bullet	254.9	\bullet
0.6	\bullet	106.0	\bullet	176.1	\bullet	253.4	\bullet	256.4	\bullet
0.7	\bullet	109.5	\bullet	178.0	\bullet	256.0	\bullet	258.0	\bullet
0.8	\bullet	138.4	\bullet	209.5	\bullet		\bullet	252.8	\bullet
0.9	\bullet	153.3	\bullet	258.1	\bullet		-	282.8	\bullet
1.0	\bullet	159.4	\bullet	269.4	\bullet		-	269.4	\bullet

[^0]Table S2. Phase transition temperatures of the mixtures of $\mathbf{1}$ and $6 .{ }^{a}$

Mole fraction	$C r$		$S m C$		N		$B P$		Iso
0.0	\bullet	96.3	\bullet	141.5	\bullet	166.1	\bullet	167.7	\bullet
0.1	\bullet	88.5	\bullet	131.0	\bullet	156.5	\bullet	157.7	\bullet
0.2	\bullet	71.1	\bullet	125.1	\bullet	151.0	\bullet	152.1	\bullet
0.3	\bullet	52.3	\bullet	121.9	\bullet	148.4	\bullet	149.5	\bullet
0.4	\bullet	42.8	\bullet	120.3	\bullet	146.2	\bullet	147.3	\bullet
0.5	\bullet	37.0	\bullet	97.6	\bullet	132.6	\bullet	133.6	\bullet
0.6	\bullet	24.4	\bullet	93.6	\bullet	118.7	\bullet	119.6	\bullet
0.7	\bullet	36.7	\bullet	86.5	\bullet		\bullet	109.0	\bullet
0.8	\bullet	29.5	\bullet	85.8	\bullet		-	109.3	\bullet
0.9	\bullet	28.8	\bullet	79.8	\bullet		-	100.1	\bullet
1.0	\bullet	63.3	\bullet	76.4	\bullet		-	94.4	\bullet

${ }^{a}$ The temperature ranges were measured by POM. The heating and cooling rates are $0.1^{\circ} \mathrm{C} / \mathrm{min}$.

Selective refractions of the pure 1 (10:0) and the mixtures of 1 and 3 (9:1, 8:2, 7:3, 6:4, and 5:5). The selective refractions of the pure chiral compound $\mathbf{1}$ and the mixtures of $\mathbf{1}$ and achiral compound $\mathbf{3}$ were carried out by POM at $T_{b p-N}-T=5(\mathrm{~K})\left(T_{b p-N}\right.$: transition temperature of the BP and N$)$ without the polarizers.

(a) 10:0 (no color)

(b) 9:1 (orange-red)

(c) 8:2 (green-yellow)

(d) 7:3 (orange)

(e) 6:4 (orange-red)

[^1]Figure 10S. Selective reflections of the mixtures 1:3 against the molar ratios. Pure chiral compound $\mathbf{1}$ did not have color (a). The mixtures at 9:1 and 8:2 showed orange-red (b) and green-yellow (c), which indicated that the helical pitch became shorter by addition of achiral compound 3. However, the mixtures at 7:3 and 6:4 showed orange (d) and orange-red (c), and at 5:5 it exhibited pale red, which meant that the helical pitch become longer by addition of the achiral dopant.

[^0]: ${ }^{a}$ The temperature ranges were measured by POM. The heating and cooling rates are $0.1^{\circ} \mathrm{C} / \mathrm{min}$.

[^1]: (f) 5:5 (red-no color)

