Electronic Supplementary Information

Enhanced Photodynamic Selectivity of Nano-Silica-Attached Porphyrins Against Breast Cancer Cells

Wenbing Li, Wentong Lu, Zhen Fan, Xianchun Zhu, Aisha Reed, Brandon Newton, Yazhou Zhang, Shavelle Courtney, Papireddy T. Tiyyagura, Shufang Li, Ebonie Butler, Hongtao Yu, Paresh C. Ray and Ruomei Gao*

Department of Chemistry and Biochemistry, Jackson State University, Jackson Mississippi 39217

Nanoparticle size measurements

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2012

Calculation of SiO₂ nanoparticle concentration

 SiO_2 molarity is reported in terms of SiO_2 nanoparticles (C_{SiO2}) to better reflect experimental conditions. The nanoparticle concentration is calculated according to Eq. 1, using a SiO_2 density (d_{SiO2} , g/cm^3) of 2.6 g/cm^3 and an average diameter (ϕ_{SiO2} , nm) of 4.0 nm.

$$C_{SiO_2} = \frac{\frac{C_{SiO_2, g/L}}{d_{SiO_2, g/cm^3}}}{\frac{4}{3}\pi(\frac{\phi_{SiO_2, nm}}{2} \times 1 \times 10^{-7})^3}{6.02 \times 10^{23}}$$
(1)

Adsorption of TMPyP onto SiO₂ nanoparticles.

The absorbance spectra and calibration curve for TMPyP loaded onto SiO₂ nanoparticles are shown in Figure S2. An average of 6.0 nm for SiO₂-TMPyP was used for calculations in this paper. All of the experiments were carried out at ambient temperature. In a typical preparation, TMPyP (2.5×10^{-5} M) was loaded onto SiO₂ (1.8 g/L or 3.4×10^{-5} M in terms of particle concentration). The molar ratio of TMPyP over SiO₂ is estimated to be 2.5×10^{-5} / $3.4 \times 10^{-5} = 0.74$. We therefore conclude that under our experimental conditions, an average of one TMPyP molecule was loaded per SiO₂ particle.

Figure S2. Absorption spectra and calibration curve of TMPyP adsorbed on SiO₂ nanoparticle (0.17 M) surface at pH 8. Spectra were measured against a pH 8 aqueous NaOH solution; 1-6: 1.0×10^{-6} , 2.0×10^{-6} , 2.5×10^{-6} , 3.3×10^{-6} , 8.3×10^{-6} and 1.0×10^{-5} M TMPyP, respectively. Insertion: calibration curve of absorbance at 426 nm vs. 1.0×10^{-6} - 1.0×10^{-5} M TMPyP adsorbed on SiO₂ nanoparticles, giving an extinction coefficient of 2.3×10^{-6} M⁻¹ cm⁻¹

Determination of bimolecular total quenching rate constants of ¹O₂ removal (k_T) by Stern-Volmer analysis.

The k_T were determined by Stern-Volmer analysis for free TMPyP, SiO₂ and SiO₂-TMPyP nanoparticles at pH 8 and pH 6. Measurements were carried out in D₂O at an excitation wavelength of 532 nm using TSPP as a sensitizer. Our data indicated that the kinetics of ${}^{1}O_{2}$ luminescence decay at 1270 nm followed Stern-Volmer equation of $k = k_d + k_T[Q]$, where k is the observed first-order rate constant of ${}^{1}O_{2}$ decay after a laser pulse and k_d is the observed first-order solvent deactivation rate constant of ${}^{1}O_{2}$ in the absence of a quencher. Changes in the ${}^{1}O_{2}$ lifetime were observed with the addition of free TMPyP, SiO₂ and SiO₂-TMPyP nanoparticles to solutions. Stern-Volmer plots show a good linear correlation between k and quencher concentrations [Q]. k_T values could then be derived from slopes of the straight lines.

Figure S3. Stern-Volmer plots for the luminescence quenching of ${}^{1}O_{2}$ by SiO₂ nanoparticles (black dots), SiO₂-TMPyP (red dots) and free TMPyP (blue dots). Solid lines are theoretical simulation using linear least-square fitting method. The experiments were carried out at an excitation wavelength of 532 nm using *meso*-Tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as a sensitizer in pH 8 D₂O solutions.

Figure S4. Stern-Volmer plots for the luminescence quenching of ${}^{1}O_{2}$ by SiO₂ nanoparticles (black dots) and free TMPyP (blue dots). Solid lines are theoretical simulation using linear least-square fitting method. The experiments were carried out at an excitation wavelength of 532 nm using *meso*-Tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as a sensitizer in pH 6.0 D₂O solutions.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

MTT assay results for Figure 6:

	Exp. Trial #	Sample 1 drak control	Sample 2 dark control	Sample 3 20 min irradiation	Sample 4 20 min irradiation
		cells only	cells+SiO2-TMPyP	cells only	cells+SiO2-TMPyP
pH 7.4	1.00	1.36	0.92	0.95	0.64
	2.00	0.71	0.70	0.86	0.48
	3.00	0.92	0.93	0.92	0.64
	Average	1.00	0.85	0.91	0.59
	S.D.	0.33	0.12	0.04	0.10
рН 6.0	1.00	1.14	0.65	0.72	0.31
	2.00	0.89	0.91	0.73	0.42
	3.00	0.96	0.82	0.93	0.32
	Average	1.00	0.79	0.79	0.35
	S.D.	0.13	0.13	0.12	0.06