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Figure S1. SEM and TEM images of small (~ 100 nm) and large (~ 1.85 µm) CSPs, 

demonstrating the ability to control particle sizes over a broad range. 
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Figure S2. Pore size distribution of CSPs derived from the desorption branch of isotherms. 
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Figure S3. TEM images of silica core-shell particles prepared by using silica/CTAC/NH4OH 
system reacted for 24 hrs at 100°C and 60°C, resepctively.    

 
Figure S3 shows TEM images of CSP-S1-24h-100°C and CSP-S2-24h-60°C, which were 

obtained in using the silica/CTAC/NH4OH system (no tridecane and NH4F) after a 24 h reaction 

time but at different temperatures of 100 °C and 60 °C, resepctively.  Compared to Figure 1 in 

the paper, several differences can be clearly observed from Figure S3 when the formulation 

without adding NH4F and tridecane was used to prepare core-shell particles.  Firstly, the core-

shell particles have non-uniform shell thicknesses. Secondly, these particles have very thin shells 

at high temperature (CSP-S1-24h-100°C) and almost no shells with radial pores at low 

temperature (CSP-S2-24h-60°C). Thirdly, particle sizes remain similar when no radial shells are 
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formed and increase in size by approximately 9% when only thin shells with radial pores are 

formed. This is in contrast with the particles discussed in the text, whose diameters increase 

more than 40 % after a 24 h reaction time (CSP-24h).  Finally, secondary nucleation is more 

difficult to avoid.  
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Figure S4. Powder XRD patterns of CSP-S1-24h-100°C and CSP-S2-24h-60°C. 

Figure S4 shows that the absence of the swelling chemical tridecane clearly resulted in a much 

stronger, though still overlapped and broad, diffraction peak (diffraction pattern from a 

combination of (110) and (200) planes) and a narrower and stronger peak (from (100) plane), 

indicating the presence of a more ordered hexagonal mesostructure in CSP-S1-24h-100°C and 

CSP-S2-24h-60°C compared to CSP-24h.  From the inset table, one can also observe that CSP-

S1-24h-100°C and CSP-S2-24h-60°C have similar but larger max. 2θ values than CSP-24h. 

However, all these samples (CSP-S1-24h-100°C, CSP-S2-24h-60°C, and CSP-24h)  have a very 

similar wall thickness.   These results strongly suggest that the warmhole-like pores have a pore 

ordering that is similar tot hat of radially oriented pores. 
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