Supporting information

1. Synthesis and characterization of β -Ga₂O₃/amorphous-SnO₂ core/shell microribbons.

Figure S1. Schematic diagram of experimental apparatus for growth of β-Ga₂O₃/amorphous-SnO₂

core/shell microribbons.

2. Measurement of core/shell microribbon device.

Figure S2. Schematic diagram of a system to measure the gas-sensing and thermal-switchable properties

of β -Ga₂O₃/amorphous-SnO₂ core/shell microribbon.

3. Electrical response of core/shell microribbon device.

Figure S3. Electrical response of core/shell microribbon-based humidity sensor during cyclic exposure to increasing RH between 15 and 75% in dry air at different operation temperatures of A) 12, B) 20, C) 30 and D) 38 °C. Current was measured at a fixed voltage of 1 V.