Supporting Information for

Push-Pull Tetraene Chromphores Derived From Dialkylamino-phenyl, Tetrahydroquinolinyl and Julolidinyl Moieties: Optimization of Second-Order Optical Nonlinearity by Fine-Tuning the Strength of Electron Donating Groups

Xing-Hua Zhou,[†] Jingdong Luo,[†] Joshua A. Davies,[†] Su Huang[†] and Alex K. Y. Jen^{†,‡}* [†]Department of Materials Science & Engineering, University of Washington Seattle, WA 98195, U. S. A. [‡]Department of Chemistry, University of Washington, Seattle, WA 98195, U. S. A.

1. Quantum mechanical calculations.

2. ¹H and ¹³C NMR spectra.

1. Quantum mechanical calculations.

DFT^{1,2} calculations were performed using Gaussian 09(A.02)³ employing the hybrid B3LYP^{4,5} exchange-correlation functional with a split valence $6-31G^{*6}$ basis set. All calculations converged to a RMS error in the density matrix of $< 10^{-11}$ au. Zero-frequency (static) hyperpolarizabilities [$\beta(0)$] were obtained using analytical derivatives.⁷ Chromophores were rotated into frame such that the *z* axis was aligned with the dipole axis and $\beta_{zzz} = \beta_{\mu}$. Solvent-dependant data was acquired using the default PCM method included in the Gaussian09 program suite. Only a single conformer (all-*E*) was used for each hyperpolarizability calculation.

Fig. S1 Numbering of the carbon atoms in the conjugated bridge for chromophores 1–3.

Compd.	Solvent	$C_1 - C_2$	C ₂ -C ₃	C ₃ -C ₄	C ₄ -C ₅	C ₅ -C ₆	C ₆ -C ₇	C ₇ –C ₈	C ₈ -C ₉	C ₉ - C ₁₀	C ₁₀ - C ₁₁
1	Vacuum	1.4467	1.3642	1.4368	1.3773	1.4261	1.3849	1.4126	1.3803	1.4114	1.3909
	Dioxane	1.4421	1.3680	1.4321	1.3825	1.4199	1.3918	1.4052	1.3875	1.4032	1.3985
	CHCl ₃	1.4380	1.3714	1.4277	1.3873	1.4143	1.3979	1.3991	1.3938	1.3965	1.4055
	CH_2Cl_2	1.4354	1.374	1.4249	1.3905	1.4108	1.4019	1.3954	1.3979	1.3925	1.4101
	CH ₃ CN	1.4323	1.3763	1.4216	1.3941	1.4068	1.4063	1.3914	1.4024	1.3881	1.4152
2	Vacuum	1.4468	1.3664	1.4356	1.3785	1.4249	1.3858	1.4118	1.3811	1.4106	1.3915
	Dioxane	1.4413	1.3709	1.4301	1.3843	1.4180	1.3932	1.4039	1.3888	1.4019	1.3997
	CHCl ₃	1.4364	1.3749	1.4251	1.3896	1.4119	1.3998	1.3974	1.3957	1.3948	1.4072
	CH_2Cl_2	1.4332	1.3775	1.4219	1.3932	1.4080	1.4041	1.3934	1.4001	1.3905	1.4121
	CH ₃ CN	1.4296	1.3806	1.4181	1.3973	1.4038	1.4090	1.3891	1.4050	1.3860	1.4176
3	Vacuum	1.4504	1.3666	1.4360	1.3785	1.4249	1.3859	1.4117	1.3810	1.4106	1.3917
	Dioxane	1.4425	1.3728	1.4286	1.3857	1.4165	1.3944	1.4027	1.3900	1.4008	1.4007
	CHCl ₃	1.4365	1.3776	1.4229	1.3919	1.4097	1.4018	1.3956	1.3975	1.3932	1.4089
	CH_2Cl_2	1.4327	1.3808	1.4190	1.3960	1.4054	1.4066	1.3913	1.4024	1.3885	1.4144
	CH ₃ CN	1.4283	1.3845	1.4147	1.4008	1.4006	1.4120	1.3866	1.4078	1.3837	1.4205

Table S1. Bond Lengths of the conjugated chain of Chromophores 1-3 Obtained by Full Geometry Optimizations using $6-31G^*$ Basis set as a Function of Solvent (Atom numbering in Fig. S1).

References

- 1. P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
- 2. W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 4. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter 1988, 37, 785.
- 5. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 6. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.

 (a) J. Gerratt, I. M. Mills, J. Chem. Phys 1968, 49, 1719. (b) C. E. Dykstra, P. G. Jasien, Chem. Phys. Lett. 1984, 109, 388. (c) J. E. Rice, N. C. Handy, J. Chem. Phys. 1991, 94, 4959.

2. ¹H and ¹³C NMR spectra

ı -

PC PC PC PC PC PC PC PC PC PC PC PC PC P	P1 P1 PL1 PL1 PL1W SF01	EXPRO PROCNO DALE UNSTRUM UNSTRUM PROBUD PROBUD SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT SOLVE
CHANNEL f2 ===== waltz16 70.00 u -2.00 d 12.90 d 20.00 d 500.0480002 M 32766 125.7366944 M 125.7366944 M 0 0.00 H 1.00 1.00	CHANNEL E1 ===== 13C 15.00 u 6.00 d 19.93825150 W 125.7492404 M	THQ-CHO C13 1 20101129 14.55 5 mm BBO RB-1H 20102 BBO RB-1H 20030.029 H 0.456222 H 1.0912410 s 1.0912410 s 1.650 u 2.00000000 s 0.030000000 s 1 4.55 2.0000000 s 1 4.55 2.0000000 s 1 4.55 1

			RES	VENT
125.7366723 MH 0 0.00 Hz 0 1.40	CHANNEL F2 =====: Waltz16 1H 70.00 dus -2.00 dus 12.96 dus 12.96 dus 20.00 dus 32768	CHANNEL fl ====== 13C 15.00 us 6.00 dB 19.93825150 W 125.7492404 MH	0.030.023 HZ 0.458222 HZ 20542.5 se 16.550 us 6.50 us 2.00000000 se 0.03000000 se 0.03000000 1	THQ-Chrmp C13 1 20101130 14.12 14.12 5 mm BBO BB-1H 2299930 65536 65536 65536 20013 1368

HANNEL fl ====== 13.00 use 6.00 dB 19.93825150 W 125.7492404 MHz 2.00000000 0.03000000 1 ĥ 867 ò sec xec

0.00 1.40

Ηz

MHz

ឌី៩៩៩

.8390 5

5 20

HZ HZ

. g

6.50

		AND CLARES
CHANNEL f2 ====== waltz16 70.00 us -2.00 dB 12.06 dB 20.06 dB 20.06 dB 20.06 dB 125.7366833 MH 3276 0 0.00 Hz 0 1.40	CHANNEL £1 =====: 13C 15.00 us 6.00 dB 19.93825150 W 125.7492404 MH	JLJJ-Chrmp C13 1 20101201 15.07 5 mm BBO BB-1H xgpg30 65536 CDC13 2043 2043 2044 1.0912410 se 1.0912410 se 20642.5 us 16.650 us 6.550 us 6.550 us 20642.5 us 16.650 us 20642.5 us 16.650 us

.__ _

PCPD2 PCPD2 PCPD2 PCPD2 PCPD2 PCPD2 PCPD2 SI PCPD2 SI SI SI SI SI SI SI SI SI SI SI SI SI	========================= NUC1 P1 PL1 PL1W SF01 SF01	PROCINO PROCINO Date Instant Instant PROBUD PROBUD PROBUD PROC PDD PROC PDD SOLVENT NS SUM PTD PTD NS SUM PTD PTD PTD PTD NS SUM PTD PTD PTD PTD PTD PTD PTD PTD PTD PTD
CHANNEL f2 ===== waltz16 70.00 t -2.00 ć 20.00 c 20.00	CHANNEL £1 ===== 13C 15.00 t 6.00 ¢ 19.93825150 v 125.7492404 b	LZ55 C13 16.12 5 mm BBO BB-14 2596ct 5 mm 2596ct 5536 5553 65536 5553 65536 5553 1.0912410 2.0912410 2.0012410 2.0012522 16.650 1.0912410 2.00000000 0.458222 16.650 1.0912410 2.00000000 1.0912410 2.00000000 1.0912410 2.00000000 1.0912410 2.000000000 2.000000000 2.000000000 2.00000000