Supporting Information

Fulya Ekiz Kanik,^a Eda Rende,^b Suna Timur^{*c} and Levent Toppare^{*abde}

^a Department of Biotechnology, Middle East Technical University, Ankara, Turkey. Fax: +903122103200; Tel: +903122103251; E-mail: toppare@metu.edu.tr

^b Department of Chemistry, Middle East Technical University, Ankara, Turkey.

^c Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey.

^d Department of Polymer Science and Technology, Middle East Technical University, Ankara, Turkey.

^eThe Center for Solar Energy Research and Applications (GUNAM), Middle East Technical University, Ankara, Turkey.

Table of Contents

Effect of glutaraldehyde amount on the biosensor response

Effect of ionic strength of the working buffer solution

Effect of temperature

Figure S1. Effect of glutaraldehyde amount on the biosensor response (in sodium phosphate buffer, 50 mM, pH 7.5, 25°C, -0.7 V, [Choline]: 10 mM). Error bars show standard deviation.

Figure S2. Effect of ionic strength of the working buffer solution (in sodium phosphate buffer, pH 7.5, 25°C, -0.7 V, [Choline]: 10 mM). Error bars show standard deviation.

Figure S3. Effect of temperature (in sodium phosphate buffer, 50 mM, pH 7.5, -0.7 V, [Choline]: 10 mM). Error bars show standard deviation.

Figure S4 Scan rate dependence of the polymer