Electronic Supplementary Information

Monodispersed GdF₃ ultrathin-nanowires: oriented attachment, luminescence, and relaxivity for MRI contrast agent

Yang Tian,* Hong-Yu Yang, Kai Li, and Xue Jin

Department of Chemistry, Capital Normal University, Beijing, P. R. China, 100048 Corresponding author: tianyang@mail.sdu.edu.cn

Fig. S1 TEM image of the GdF₃ nanocrystals prepared by reacting for 24 h

Fig. S2 TEM image of the product obtained from the reaction lasting for 5 min.

Fig. S3 TEM image of the product obtained from the reaction lasting for 10 min.

Fig. S4 Fast Fourier transform (FFT) of twin-crystal

Fig. S5 TEM image of the ultrasthin GdF_3 nanowires doped with Eu^{3+}

Fig. S6 EDX spectrum of the obtained GdF_3 nanowires doped with Eu^{3+}

Table S1 Decay components of the obtained Eu^{3+} -doping GdF₃ nanowires with concentrations of 5 mol %, 10 mol %, and 20 mol %.

Eu ³⁺ concentration	τ_1	τ_1 component	τ_2	τ_2 component
(mol %)	(ms)	(%)	(ms)	(%)
5	1.41	15.47	4.31	84.53
10	1.25	18.06	3.73	81.94
20	1.15	13.74	3.56	86.26

Fig. S7 Photograph (a) and TEM image (b) of the ultrathin GdF_3 nanowires in the water after being modified with PF127.

Surface-to-volume ratio calculations for 0D nanoparticles and 1D nanowires:

The surface-to-volume ratio described as the following equation:

$$A = \frac{S}{V}$$

The radius of spherical nanoparticles is r_s . The specific surface area of spherical nanoparticles can be calculated by the equation:

The radius of nanowires is r_w and the length is *l*. For ultrathin nanowires, $r_w \le l$. A_w can be obtained in the same way:

$$A_{w} = \frac{2\pi r_{w}^{2} + 2\pi r_{w} l}{\pi r_{w}^{2} l} = \frac{2\pi r_{w} (r_{w} + l)}{\pi r_{w}^{2} l}$$
$$= \frac{2(r_{w} + l)}{r_{w} l} \approx \frac{2l}{r_{w} l} (r_{w} \ll l)$$

$$A_{w} = \frac{2}{r_{w}}$$