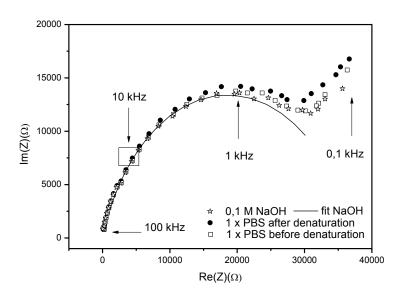
Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

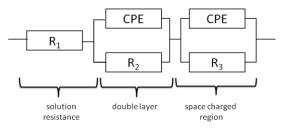
SUPPORTING MATERIAL


Rapid assessment of the stability of DNA duplexes by impedimetric realtime monitoring of chemically induced denaturation

B. van Grinsven^a, N. Vandenbon^b, L. Grieten^a, M. Murib^a, S.D. Janssens^a, K. Haenen^{a,c}, E. Schneider^d, S. Ingebrandt^d, M.J. Schöning^e, V. Vermeeren^b, M. Ameloot^b, ⁵ L. Michiels^b, R. Thoelen^{a,f}, W. De Ceuninck^{a,c}, and P. Wagner^{a,c}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Supporting information


Nyquist plots of the impedance spectra

10

This Nyquist plot shows the impedance data of # D1, see Figure 2, in the full frequency range from 100 Hz to 100 kHz before denaturation (sensor cell filled with $1 \times PBS$), after denaturation (cell filled with 0.1 M NaOH), and after refilling with $1 \times PBS$. The 10 kHz point, the frequency used to extract the denaturation dynamics, is indicated by an open box. The high frequency part of all plots can be simulated with a three-element circuit consisting of a solution resistance R₁ in series with a complex resistance describing the biological and the temperat DNA lower. This lower can be represented by a restrict R and a complex resistance describing the biological and the temperat DNA lower.

¹⁵ biological and the topmost DNA layer. This layer can be represented by a resistor R_2 and a constant-phase element CPE with an almost capacitive behaviour (n = 0.80). The Nyquist plot indicates that there is a second semi circle in the low-frequency domain, but the data, not extending below 100 Hz, do not allow for a reliable fitting. A complete scheme, taking into account also the space- charge region to model the second semi circle, is supposed to correspond to the circuit below.

The fit parameters obtained for the three elements R_1 , CPE and n, and R_2 are summarized in the following table. Only data points in the frequency range between 1 kHz and 100 kHz were taken into account. Although there is no marked difference for the situation in 1 × PBS buffer before and after denaturation, we suppose that the sensor effect is mainly related to the capacitive constant-phase properties of the electrode surface.

	1 x PBS before denaturation	1 x PBS after denaturation	0.1 M NaOH	Error (%)
$R_1(\Omega)$	142	142	140	2.5
CPE (nSs ⁿ)	21.9	24.1	23.9	2.2
n	0.8	0.79	0.79	1.0
R_{2}^{2} (k Ω)	39.3	38.0	37.1	1.2

Chemical agents and buffer solutions

5

The probe ssDNA molecules were purchased from Eurogentec (Seraing, Belgium), and were modified at the 5' end with a NH₂-modifier (36 bp: 5'-NH₂-C₆H₁₂-AAA-AAA-ACC-CCT-GCA-GCC-CAT-GTA-TAC-CCC-CGA-ACC-3'). The target ssDNA molecules bought from Invitrogen (Merelbeke, Belgium), were modified at the 5' end with an Alexa Fluor® 488 label. Target ssDNA contains a sequence that is either completely complementary to the probe ssDNA (29 bp : 5'-Alexa 488- C₆H₁₂-GGT-TCG-GGG-GTA-TAC-ATG-GGC-TGC-AGG-GG-3'), carries a 1-base mismatch to the probe ssDNA on to distinct locations (29 bp: 5'-Alexa 488- C₆H₁₂-GGT-TCG-GGG-CTA-TAC-ATG-GGC-TCG-GGG-GTA-TAC-ATG-GGC-TCC-AGG-GG-3'), or complementary random (29 bp: 5'-Alexa 488- C₆H₁₂-TCA-AAT-TGC-CAG-AAC-AAC-TAC-TGA-CTG-AA-3'). Sodium dodecyl sulfate (SDS) was obtained from VWR International (Zaventem, Belgium). 10-Undecenoic acid (UDA) was bought from Sigma-Aldrich (Bornem, Belgium). EDC and 2-[N-morpholino]-ethanesulphonicacid (MES) were purchased from Perbio Science (Erembodegem, Belgium). Sodiumhydroxide (NaOH) was acquired from Merck (Overijse, Belgium). Phosphate buffered saline (PBS) (1.29 M NaCl, 0.05 M Na₂HPO₄*2H₂O, 0.015 M KH₂PO₄, pH 7.2) sodium chloride/ sodium citrate (SSC) buffer (3 M NaCl, 0.3 M C₆H₈O₇*3Na, pH7.5) and hybridization buffer (0.75 M NaCl, 0.075 M C₆H₈O₇*3Na, 0.1% BSA, 0.1% Ficoll, 0.1% C₆H₉NO, 5% 20 dextran sulphate, 5 mM Na₂HPO₄, 0,1% SDS, 50µg/L herring sperm DNA) were homemade.