Supporting material

Inferring the transcriptional network of Bacillus subtilis

Figure S1. Workflow of the de *novo* motif detection. 1) Search for motifs in the orthologous space: conserved sequences (blocks) are extracted from the orthologous intergenic regions of four Bacillus species by means of BlockSampler, a Gibbs-sampling algorithm. The sequence of *B. subtilis* is indicated in blue. Detected conserved blocks are represented as PWMs; 2) Search for motifs in the co-expression space: All PWMs are aligned pair-wise and similarity scores are obtained 3) Similarity scores are used as input for clustering in order to identify groups of sequences sharing a common motif (or block as represented by a PWM); 4) Each block in a cluster corresponds to a different motif site of one particular regulator, conserved across the four different species. From each block within a cluster the sequence of *B. subtilis* is used to construct a *B. subtilis* specific motif model.

Evaluation of the *de novo* motif detection method

Predicted motif sites were compared with known motif sites reported in DBTBS. There are 605 known motif sites for the genes used in the study (i.e. genes that had orthologs across all four species). When a predicted motif site overlapped with a known site in DBTBS by at least 5 bp, the predicted site was considered a true positive (TP). We defined the following measures

Recall = TP / (TP+FN)

Precision = TP / (TP+FP)

Density of hits = TP / length of concatenated potential motif sites

where FN = false negatives, and FP = false positives. False negatives correspond to sites in DBTBS that were not recovered by our motif detection. Note that in this

calculation all predicted sites that are not overlapping with a known site are considered false positives. The latter assumption underestimates the precision of the method.

The phylogenetic footprinting step (BlockSampler output) resulted in the discovery of 7543 conserved sites in *B. subtilis*. The recall and precision after this step were 89% and 15.7% respectively; the density of hits was 0.68 hits/kb. Clustering similar blocks followed by motif extraction reduced the number of sites to 393, with a recall of 8.4% and a precision of 13.7% and a density of hits of 12.9 hits/kb.

As can be expected, reducing the number of motifs by exploiting the conservation between motifs results in a serious drop of sensitivity. The specificity remains approximately constant but the density of hits increases 19 times. This means that the initial blocks (phylogenetically conserved regions in single genes) contain sequences that are much larger than a motif. By using the co-regulation space these individually conserved regions could successfully be reduced to the cores of the conserved motifs that were shared by multiple genes. Note also that in the calculation of the precision, all novel predictions are considered FP. As a result, the slight drop in precision after reducing the number of motifs means that we lost relatively more known motif models than novel ones, i.e. relatively more novel motifs fulfill the more stringent parameters than known motifs.

Selecting parameter values for DISTILLER

To determine optimal parameter settings for DISTILLER, we performed several test runs in which the main parameters were varied (see table S1). Predicted interactions resulting from each run where compared with known interactions documented in DBTBS. For each run, recall and precision were estimated as follows:

- Recall = TP / (TP+FN)
- Precision = TP / (TP+FP)

where TP = true positives, FN = false negatives, and FP = false positives. All used parameter settings tested are listed in Table S1, and the results are plotted in Figure S2. Test 14 resulted in the best trade off between precision and recall (measured by precision x recall). Therefore the parameter settings corresponding to test 14 were applied in our analysis: minimum number of genes in a module = 4; minimum number of conditions in a module = 30; number of randomizations = 100,000; box pvalue threshold = 0.001; bandwidth = 0.00001.

In general, the effect of varying parameter settings on the ability of DISTILLER to recall known interactions versus predicting new ones was as follows:

- 1. Increasing the minimum number of genes in a module from 3 to 4 did not have a definitive effect.
- 2. Increasing the minimum number of arrays in a module from 30 to 50 did not have a definitive effect.
- 3. Increasing the motif threshold from 0.995 (p-value of 0.005) to 0.999 (p-value of 0.001) had a better recall x precision. This is not surprising, since the known motif sites have a score of 1, and increasing the threshold results in excluding many predicted instances.
- 4. Increasing the bandwidth threshold from a p-value of 0.0001 to 0.00001 yielded worse recall x precision. Bandwidth is a measure of the "tightness" of the genes' co-expression in the sets of arrays tested, and here it seems that

relaxing the threshold could recall more of the known interactions.

Test	Motif	No of	No of	Bandwidth p-	Randomizations
	threshold	genes	conditions	value	
test 1	0.995	3	30	0.0001	100,000
test 2	0.995	3	30	0.00001	100,000
test 3	0.995	3	50	0.0001	100,000
test 4	0.995	3	50	0.00001	100,000
test 5	0.995	4	30	0.0001	100,000
test 6	0.995	4	30	0.00001	100,000
test 7	0.995	4	50	0.0001	100,000
test 8	0.995	4	50	0.00001	100,000
test 9	0.999	3	30	0.0001	100,000
test 10	0.999	3	30	0.00001	100,000
test 11	0.999	3	50	0.0001	100,000
test 12	0.999	3	50	0.00001	100,000
test 13	0.999	4	30	0.0001	100,000
test 14	0.999	4	30	0.00001	100,000
test 15	0.999	4	50	0.0001	100,000
test 16	0.999	4	50	0.00001	100,000

Table S1 Different parameter settings that were used to test the parameter sensitivity. Tests printed in gray could not be completed because of computational complexity.

Figure S2 Assessing different parameter settings on the precision and recall of DISTILLER. For the different parameter sets in table S1 precision (B), recall (A), and the product of precision and recall (C) were plotted for up to 150 best scoring modules. Parameter setting for test 14 was used in our analysis; it showed the best recall and near optimum precision.

Distance Recall		Precision	Recall x Precision
<u>0</u>	0.4	0.338028169	0.135211268
1047	0.491666667	0.286407767	0.140817152
2000	0.625	0.262237762	0.163898601
2100	0.641666667	0.264604811	0.169788087
2300	0.666666667	0.261437908	0.174291939
2400	0.675	0.255520505	0.172476341
<mark>2500</mark>	<mark>0.691666667</mark>	<mark>0.25382263</mark>	<mark>0.175560653</mark>
2600	0.691666667	0.250755287	0.173439074
2700	0.691666667	0.246290801	0.170351137
2800	0.691666667	0.238505747	0.164966475
2900	0.691666667	0.233802817	0.161713615
3000	0.691666667	0.229916898	0.159025855
3500	0.708333333	0.222513089	0.157613438
4000	0.716666667	0.209756098	0.150325204
4500	0.725	0.201388889	0.146006944
6000	0.75	0.18	0.135
<u>1763378</u>	0.991666667	0.00895208	0.008877479

Table S2. Choosing an optimum genomic distance to assign regulators to groups of genes.

Figure S3. Choosing an optimum genomic distance to assign regulators to groups of genes.

Caption for Table S2 and Figure S3.

The distance between a regulator and its closest target gene was calculated for all documented regulators in DBTBS. The distance measure was taken from the middle of the coding sequences of the genes, taking circularity of the genome into account. The maximum, median, and minimum of those distances were 1763378, 1047, and 0 (auto-regulators), respectively (underlined in table S1). The recall and precision of the method of assigning a regulator to a group of target genes based on the genomic distance was calculated according to the formulas: Recall = TP/(TP+FN)

Precision = TP/(TP+FP)

where TP = true positives, FN = false negatives, and FP = false positives. True positives were calculated as follows: for all the known regulons of regulators documented in DBTBS, the number of the assigned regulators based on a certain genomic distance that match the true ones are true positives. False negatives are all those true regulators that were missed by our method, and the false positives are all the regulators wrongfully assigned to the regulons. To assess which of the distances measured best fit our method, the value of (recall x precision) was plotted for each distance, and the distance of 2500 bp had the highest value (highlighted in table S1).

Table S3. List of predicted novel interactions and their mode of regulation. Each predicted regulator-gene interaction is listed in the corresponding columns. A positive or negative mode of regulation is listed in the column 'Regulation', as well as the module in which this interaction was predicted.

Regulator	Gene	Regulation	Module
AbrB	appB	Negative	12
AbrB	appC	Negative	12
AbrB	appD	Negative	12
AbrB	pspA	Negative	12
AbrB	ydjG	Negative	12
AbrB	ydjI	Negative	12
AbrB	ywoF	Negative	12
AbrB	pksC	Negative	37
AbrB	pksD	Negative	37
AbrB	<i>qcrA</i>	Negative	37
AbrB	<i>qcrB</i>	Negative	37
AbrB	qcrC	Negative	37
AbrB	rapG	Negative	37
AbrB	rapH	Negative	37
AbrB	rapK	Negative	37
AbrB	sacT	Negative	37
AbrB	ybaJ	Negative	37
AbrB	ycbJ	Negative	37
AbrB	yheJ	Negative	37
AbrB	ykuU	Negative	37
AbrB	yqeB	Negative	37
AbrB	yqfA	Negative	37
AbrB	yurI	Negative	37
AbrB	yvzA	Negative	37
AbrB	ywfB	Negative	37
AbrB	ybdG	Negative	60
AbrB	yczC	Negative	60
AbrB	yocD	Negative	61
AbrB	yqjZ	Negative	61
AbrB	yxiF	Negative	61
AbrB	yxxF	Negative	61
AbrB	appA	Negative	62
AbrB	appF	Negative	62
AbrB	ујсН	Negative	62
AbrB	yjiB	Negative	62
AbrB	yocS	Negative	62

AbrB	yueE	Negative	62
AbrB	ywaA	Negative	62
AbrB	acpA	Negative	104
AbrB	cspB	Negative	104
AbrB	<i>tnrA</i>	Negative	104
AbrB	veg	Negative	104
AbrB	yceC	Negative	104
AbrB	yceD	Negative	104
AbrB	yceK	Negative	104
AbrB	, vkoF	Negative	104
AbrB	yktD	Negative	104
AbrB	vkuR	Negative	104
AbrB	vkzG	Negative	104
AbrB	vlmC	Negative	104
AbrB	vmfC	Negative	104
AbrB	vobO	Negative	104
AbrB	vraM	Negative	104
AbrB	vceE	Negative	130
AbrB	vceF	Negative	130
AbrB	vokG	Negative	130
AbrB	vuiE	Negative	130
AbrB	vrdC	Negative	131
AbrB	hom	Negative	132
AbrB	mdr	Negative	132
AbrB	oppA	Negative	132
AbrB	vbgG	Negative	132
AbrB	vcgM	Negative	132
AbrB	vdeI	Negative	132
AbrB	vfhP	Negative	132
AbrB	vgaF	Negative	132
AbrB	voaE	Negative	132
AbrB	vagB	Negative	132
AbrB	vrbB	Negative	132
CcpA	glnO	Negative	51
CcpA	glnT	Negative	51
CcpA	infC	Negative	51
CcpA	iag	Negative	51
CcpA	khl	Negative	51
CcpA	rocB	Negative	51
CepA	rnlT	Negative	51
CepA	rnmB	Negative	51
CcpA	rpmI	Negative	51
CcpA	spoIII.J	Negative	51
CcnA	vbxF	Negative	51
CcpA	vchF	Negative	51
CepA	vcsA	Negative	51
CcpA	vesL	Negative	51
CcpA	vfiG	Negative	51
CcpA	vulD	Negative	51
CcpA	yvdF	Negative	51
CcpA	yvdH	Negative	51
CcpA	vvd.I	Negative	51
СсрА	msmR	Negative	52

СсрА	mtlA	Negative	52
CcpA	pmi	Negative	52
CcpA	sacA	Negative	52
CcpA	sacP	Negative	52
CcpA	vsbA	Negative	52
CepA	enr	Negative	83
CenA	lnlA	Negative	83
CcnA	manP	Negative	83
CcnA	manR	Negative	83
CenA	nun A	Negative	83
CcnA	vdhM	Negative	83
CenA	vdhT	Negative	83
CenA	yun1 vncC	Negative	83
CenA	ynee wugN	Negative	83
CenA	rsa	Negative	84
CcnA	vdeR	Negative	84
CepA	ywcF	Negative	84
CcnA	ywell ywc I	Negative	84
CepA	ywe5 ywhF	Negative	84
CepA	dhaS	Negative	86
CepA	anas autR	Negative	86
CepA	ykoM	Negative	86
CepA	ykowi vslR	Negative	86
CepA	ysiD wurM	Negative	86
CepA CepA	yur N oit U	Negative	114
CepA CepA		Negative	114
CepA CepA	guik	Negative	114
CepA CepA	pia w=E	Negative	114
CepA CepA	yr2F wshP	Negative	114
CepA CepA	ysnB acaD	Negative	114
CepA CepA	gcuD	Negative	115
CepA CepA	prs whoE	Negative	115
CepA CepA	ydcr wlhN	Negative	115
CepA CepA	yiDIN thD	Negative	115
CepA Cep A	yikP t.D	Negative	115
CepA CepA	yixD	Negative	115
CepA	CCCA	Negative	110
СерА	CSIA	Negative	116
CepA	rocA	Negative	116
СсрА	rocC	Negative	116
СсрА	rocD	Negative	116
СсрА	rocE	Negative	116
СсрА	rocF	Negative	116
СсрА	yckB	Negative	116
СсрА	ydzA	Negative	116
СсрА	yodJ	Negative	116
CcpA	yojA	Negative	116
CcpA	ypmQ	Negative	116
CcpA	ytcP	Negative	116
CcpA	dctB	Negative	136
CcpA	sigI	Negative	136
CcpA	yydK	Negative	136
CodY	appC	Negative	55
CodY	appD	Negative	55

CodY	bioI	Negative	55
CodY	comGD	Negative	55
CodY	yjcG	Negative	55
CodY	ykvW	Negative	55
CodY	yqzE	Negative	55
CodY	yrkF	Negative	55
CodY	yuiA	Negative	55
CodY	yuxL	Negative	55
CodY	ywcE	Negative	55
CodY	yxiA	Negative	55
CodY	ухјG	Negative	55
ComK	pksI	Positive	22
ComK	ywfM	Positive	22
ComK	yydF	Positive	22
ComK	lexA	Positive	81
ComK	parC	Positive	81
ComK	parE	Positive	81
ComK	ruvA	Positive	81
ComK	ruvB	Positive	81
ComK	uvrA	Positive	81
ComK	uvrB	Positive	81
ComK	vhaM	Positive	81
ComK	vhaO	Positive	81
ComK	vaiY	Positive	81
ComK	vckE	Positive	138
ComK	vihF	Positive	138
ComK	yazG	Positive	138
ComK	jų28 bioA	Positive	130
ComK	bioR	Positive	139
ComK	bioD	Positive	139
ComK	bioE	Positive	139
ComK	biol	Positive	139
ComK	bioW	Positive	139
ComK	clnP	Positive	139
ComK	dnaK	Positive	139
ComK	arnE	Positive	139
ComK	grpL hreA	Positive	139
ComK	mrcA matS	Positive	139
ComK	nets	Positive	139
ComK	pubA nahP	I Ositive Desitive	139
ComK	равы тар	Positive	139
ComK		Positive	139
ComK	rpn	Positive	139
Comk	SIT UD	Positive	139
ComK	spov B	Positive	139
ComK	yach	Positive	139
ComK	ycgM	Positive	139
ComK	yısT	Positive	139
ComK	yokB	Positive	139
ComK	ytbQ	Positive	139
ComK	ywfB	Positive	139
ComK	ywrO	Positive	139
ComK	yxiF	Positive	139
ComK	pksC	Positive	141

ComK	rapK	Positive	141
ComK	ybdN	Positive	141
ComK	ybfO	Positive	141
ComK	ycbJ	Positive	141
ComK	yfmK	Positive	141
ComK	yvaW	Positive	141
ComK	yvaX	Positive	141
ComK	yvaY	Positive	141
ComK	yvaZ	Positive	141
ComK	yvbA	Positive	141
ComK	yvzA	Positive	141
ComK	yweA	Positive	141
ComK	ywqC	Positive	141
ComK	yybJ	Positive	141
ComK	yybK	Positive	141
ComK	vybL	Positive	141
ComK	yybM	Positive	141
ComK	vvbN	Positive	141
ComK	vvdG	Positive	141
ComK	yy yydH	Positive	141
ComK	vvdI	Positive	141
ComK	vvdJ	Positive	141
ComK	vcgL	Unknown	80
ComK	vdfL	Unknown	80
ComK	vdhH	Unknown	80
ComK	vwbO	Unknown	80
ComK	vwoB	Unknown	80
ComK	atnI	Unknown	82
ComK	hemL	Unknown	8 <u>2</u>
ComK	kinB	Unknown	82
ComK	rnsL	Unknown	82 82
ComK	rshT	Unknown	82 82
ComK	sinV	Unknown	82
ComK	sıp i tnr 4	Unknown	82 82
ComK	vahD	Unknown	82
ComK	yuoD vceK	Unknown	82
ComK	yceR vdiO	Unknown	82
ComK	yuiQ	Unknown	82
ComK	ynjE vobO	Unknown	82
ComK	yodQ vodE	Unknown	82
ComK	your	Unknown	82 82
ComK	yogA	Unknown	82 82
ComK	yqeL	Unknown	82 82
ComK	yrvi m D	Unknown	02 82
ComK	yvzD	Unknown	82
Comk	уwqв	Unknown	82
ComK	уурв	Unknown	82
ComK	aegs	Unknown	109
ComK		Unknown	109
ComK	ilvC	Unknown	109
ComK	leuA	Unknown	109
ComK	leuB	Unknown	109
ComK	leuC	Unknown	109
ComK	leuD	Unknown	109

ComK	lonA	Unknown	109
ComK	nprE	Unknown	109
ComK	pycA	Unknown	109
ComK	sigH	Unknown	109
ComK	yfhB	Unknown	109
ComK	уjcH	Unknown	109
ComK	yjcI	Unknown	109
ComK	yjcJ	Unknown	109
ComK	yjcS	Unknown	109
ComK	<i>yjdA</i>	Unknown	109
ComK	yoaD	Unknown	109
ComK	yoaE	Unknown	109
ComK	yobK	Unknown	109
ComK	yokD	Unknown	109
ComK	vpdA	Unknown	109
ComK	vpfD	Unknown	109
ComK	yqgP	Unknown	109
ComK	vajI	Unknown	109
ComK	vrbB	Unknown	109
ComK	yurK	Unknown	109
ComK	vwfH	Unknown	109
ComK	vwnF	Unknown	109
ComK	vxiG	Unknown	109
ComK	hemB	Unknown	140
ComK	vtaG	Unknown	140
Fur	fhuB	Negative	1
Fur	vetG	Negative	1
Fur	vxeC	Negative	8
Fur	vclM	Negative	46
Fur	vku.I	Negative	46
Fur	fhuC	Negative	105
Fur	yhu@ vkvW	Negative	103
Fur	vnhR	Negative	122
Fur	clnP	Unknown	58
Fur	dns	Unknown	58
Fur	ups osnA	Unknown	58
Fur	вэрл vdaN	Unknown	58
Fur	yuurv vfl 4	Unknown	58
Fur	yj1/1 vk7 4	Unknown	50
Fur	yrza vocR	Unknown	50
Fur	y00D	Unknown	50 50
Fur	yygz	Unknown	50 50
Fur	yumD	Unknown	50 50
r ui Fur	yvuA muiE	Unknown	50 50
r ui Fur	ywiE	Ulikilowil	28 20
r ui CorE	yxzr	UIIKIIOWII	28
CorE	yioD		2
GerE	yisZ	Unknown	6
GerE	yilA	Unknown	0
	yitB	Unknown	6
LexA	ymaC	Negative	9
	yprA	Negative	9
LexA	yvsG	Negative	9
LexA	рсгВ	Negative	128

PerR	dhbA	Unknown	8
PerR	dhbC	Unknown	8
PerR	feuA	Unknown	8
PerR	feuB	Unknown	8
PerR	feuC	Unknown	8
PerR	fhuB	Unknown	8
PerR	fhuD	Unknown	8
PerR	vbbA	Unknown	8
PerR	vdbN	Unknown	8
PerR	y fhA	Unknown	8
PerR	vfiY	Unknown	8
PerR	vfìZ	Unknown	8
PerR	vfmC	Unknown	8
PerR	vhfQ	Unknown	8
PerR	vkuN	Unknown	8
PerR	ykuO	Unknown	8
PerR	voaJ	Unknown	8
PerR	y vusV	Unknown	8
PerR	vwbL	Unknown	8
PerR	vwbM	Unknown	8
PerR	vwbN	Unknown	8
PerR	vxeB	Unknown	8
PerR	vxeC	Unknown	8
PerR	citZ	Unknown	29
PerR	tagR	Unknown	29
PerR	vurY	Unknown	29
PerR	dhbB	Unknown	137
PerR	dhbE	Unknown	137
PerR	dhbE	Unknown	137
PerR	vhbR	Unknown	137
PerR	vetG	Unknown	137
PerR	yerg vkuP	Unknown	137
PerR	ynai vuil	Unknown	137
ResD	halP	Positive	45
ResD	hem A	Positive	45
ResD	hemR	Positive	45
ResD	narG	Positive	45
ResD	narH	Positive	45
ResD	narl	Positive	45
ResD	nar I	Positive	45
ResD	nur5 vdbI	Positive	45
ResD	yuUL vhfQ	Positive	43
ResD	yny0 varI	Positive	45
ResD	yqx1 yuaI	Positive	45
ResD	yue5 wriF	Positive	43
SigP	yxiL vshP	Positive	43
SigE	via7	Positive	22
SigE	yisz wit 4	Positive	22
SigE	yllA witP	Positive	33 22
SIGE	yiiD com FD	Positivo	ככ רד
SIGE	COMER	Positivo	12
SigE	sspb	Positive	12
SigE	your whe ^N	Positive	12 72
SIGE	ynciv	rositive	12

SigE	vogA	Positive	72
SigE	vvlA	Positive	72
SigE	vlbI	Positive	74
SigE	sigG	Positive	75
SigE	xsa	Positive	75
SigE	cgeC	Positive	101
SigE	vfiA	Positive	101
SigE	vfnF	Positive	101
SigE	vfnG	Positive	101
SigE	yfnH	Positive	101
SigE	vqfQ	Positive	101
SigE	gapB	Positive	125
SigE	vkuD	Positive	125
SigE	oppB	Positive	127
SigF	csbX	Positive	50
SigF	vfhE	Positive	50
SigF	vfhF	Positive	50
SigH	vwfG	Positive	43
SigH	rapE	Positive	87
SigH	rapG	Positive	87
SigH	rapH	Positive	87
SigH	vaiZ	Positive	87
SigH	citG	Positive	120
SigW	appB	Positive	12
SigW	appC	Positive	12
SigW	appD	Positive	12
SigW	vwoF	Positive	12
SigW	dnaK	Positive	28
SigW	grpE	Positive	28
SigW	hrcA	Positive	28
SigW	vdgC	Positive	28
SigW	vibI	Positive	28
SigW	vpuD	Positive	28
SigW	vrzG	Positive	28
SigW	vugM	Positive	28
SigW	yutM	Positive	28
SigW	vwdE	Positive	28
SigW	ywsA	Positive	28
SigW	vczC	Positive	56
SigW	y vkuA	Positive	56
SigW	vugI	Positive	57
SigW	yuzE	Positive	98
SigW	vagU	Positive	99
SigW	lvtR	Positive	129
SigW	sunT	Positive	129
SigW	vncM	Positive	129
SigW	vxbC	Positive	129
SigW	vxbD	Positive	129
Spo0A	vwkC	Positive	31
Spo0A	vhiM	Unknown	32
Spo0A	yodL	Unknown	32
SpoIIID	dacB	Negative	10
SpoIIID	spoIIP	Negative	11

SpoIIID	yloB	Negative	17
SpoIIID	yoaN	Positive	69
SpoIIID	cotV	Unknown	13
SpoIIID	cotW	Unknown	13
TnrA	tuaA	Positive	66
TnrA	tuaB	Positive	66
TnrA	tuaC	Positive	66
TnrA	tuaD	Positive	66
TnrA	tuaF	Positive	66
TnrA	yrbD	Positive	66

Table S4. Predicted intra-operonic motif sites. All genes predicted to have a motif site upstream are listed, together with their operons, and the predicted motif. If our prediction was listed by de Hoon *et al.* a 'one' is indicated.

Gene	Operon	Predicted motif	Predicted by de Hoon <i>et al</i> .
асоВ	acoABCL	motif 14	0
appC	appDFABC	CodY	0
araP	araABDLMNPQ-abfA	СсрА	1
bioI	bioWAFDBI-ytbQ	CodY	0
cgeB	cgeAB	motif_75	0
comEB	comEABC	ComK	0
degU	degSU	motif_187	1
dppC	dppABCDE	CodY	0
flhO	usd-spoIIID-mbl-flhOP	motif_106	1
folD	nusB-folD	PurR	0
glpK	glpFK	CcpA	0
glpK	glpFK	motif_106	0
hemC	hemAXCDBL	PerR	0
hemL	hemAXCDBL	ComK	0
hemL	hemAXCDBL	motif_187	0
iolD	mmsA-iolBCDEF-idh-iolHI-fbaB	CcpA	1
mbl	usd-spoIIID-mbl-flhOP	motif_14	1
mmgD	mmgABCDE-yqiQ	SigE	0
nupC	deoR-dra-nupC-pdp	СсрА	0
nupC	deoR-dra-nupC-pdp	motif_14	0
оррВ	oppABCDF	SigE	0
punA	drm-punA	СсрА	0
purM	purEKBCSQLFMNHD	PurR	0
qcrC	qcrABC	AbrB	0
rbsC	rbsRKDACB	СсрА	0
rocB	rocABC	CcpA	0
rplT	infC-rpmI-rplT-ysdA	CcpA	0
rpsF	yyaF-rpsF-ssb-rpsR	motif_2	1
rpsR	yyaF-rpsF-ssb-rpsR	motif_2	0
rsbT	rsbRSTUVW-sigB-rsbX	ComK	0
sipV	yhjE-sipV	ComK	0
tagB	tagAB	PerR	0
trpF	trpEDCFBA-hisC-tyrA-aroE	motif_187	0
yacF	pabBAC-sul-folBK-yazB-yacF-lysS	ComK	0
yacK	ctsR-mcsAB-clpC-radA-yacK	motif_53	0
yceD	yceCDEFGH	AbrB	0

vdiI	pspA-vdiGHI	SigW AbrB	0
yfhE	yfhFED	motif 14	1
yfiA	malA-yfiA-malP	SigE	0
yfnD	yfnHGFED	motif_187	0
yhaM	yhaONM	ComK	1
ylxF	fla-che	motif_106	0
ylxR	ylxS-nusA-ylxRQ-infB-ylxP-rbfA	motif_2	0
yoxB	yoxCB-yoaA	motif_53	0
yqcK	arsR-yqcK-arsBC	motif_53	1
yqfA	yqeZ-yqfA-yqfB	AbrB	0
yqzE	comGABCDEFG-yqzE	CodY	1
yrvI	relA-yrvI	ComK	1
ytxH	ytxGHJ	motif_260	0
yurG	yurHG	motif_3	1
yvfM	yvfKLM-lacA-yvfO	motif_14	0
ужсН	nfrA-ywcH	motif_53	1
yxiE	bglPH-yxiE	ResD	0

Table S5. A list of all arrays and their assigned conditional categories. The column 'Array' refers to the experiment according to the source database (SMD, the first 3 arrays; GEO, the rest), while 'Category' refers to one of the 6 conditional categories, or to a control experiment.

Array	Category
C_26966	peroxide
C_26967	peroxide
C_26968	peroxide
GSM104507	control
GSM104511	control
GSM104514	control
GSM104517	DNA
GSM104518	DNA
GSM104519	DNA
GSM104520	DNA
GSM104521	DNA
GSM104522	DNA
GSM104523	DNA
GSM104524	DNA
GSM104525	DNA
GSM104526	control
GSM104527	control
GSM104528	control
GSM104727	DNA
GSM104728	DNA
GSM104729	DNA
GSM104730	DNA
GSM104731	DNA
GSM104732	DNA
GSM104733	DNA

GSM104734DNAGSM104735DNAGSM105249sporulationGSM105250sporulation	
GSM104735 DNA GSM105249 sporulation GSM105250 sporulation	
GSM105249 sporulation GSM105250 sporulation	
GSM105250 sporulation	
GSM105251 sporulation	
GSM105252 DNA	
GSM105253 DNA	
GSM105254 DNA	
GSM105255 DNA	
GSM105255 DNA	
GSM105257 DNA	
GSM105257 DIAT	
GSM105259 DNA	
GSM105260 DNA	
GSM105260 DIVA	
GSM105267 control	
GSM105262 control	
GSM105264 DNA	
$\begin{array}{c} \text{OSM105204} \text{DINA} \\ \text{OSM105265} \text{DINA} \end{array}$	
GSM105265 DNA	
CSM105200 DNA	
GSM105267 DNA	
GSM105268 DNA	
GSM105269 DNA	
GSM105270 DNA	
GSM1052/1 quorum response	
GSM105272 DNA	
GSM1052/3 DNA	
GSM105280 quorum response	
GSM105281 quorum response	
GSM105282 quorum response	
GSM105283 quorum response	
GSM105284 quorum response	
GSM105285 quorum response	
GSM105286 quorum response	
GSM105287 quorum response	
GSM105288 quorum response	
GSM105289 quorum response	
GSM105290 quorum response	
GSM105326 control	
GSM105327 control	
GSM105328 control	
GSM105329 quorum response	
GSM105330 DNA	
GSM105331 DNA	
GSM105332 DNA	
GSM105345 DNA	
GSM105346 quorum response	
GSM105347 DNA	
GSM105348 DNA	
GSM105349 quorum response	
GSM105350 DNA	
GSM105351 DNA	
GSM105352 quorum response	

Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2009

GSM105353	DNA
GSM105354	quorum response
GSM105355	quorum response
GSM105356	quorum response
GSM105357	quorum response
GSM105358	quorum response
GSM105359	control
GSM105360	control
GSM105361	control
GSM105416	DNA
GSM105417	DNA
GSM105418	DNA
GSM105419	control
GSM105420	control
GSM105421	control
GSM105422	DNA
GSM105423	DNA
GSM105424	DNA
GSM105425	DNA
GSM105426	DNA
GSM105427	DNA
GSM27217	sporulation
GSM27218	sporulation
GSM27219	sporulation
GSM27278	sporulation
GSM27279	sporulation
GSM27280	sporulation
GSM27281	sporulation
GSM27282	sporulation
GSM27283	sporulation
GSM27285	sporulation
GSM27286	sporulation
GSM27288	sporulation
GSM27514	sporulation
GSM27515	sporulation
GSM27516	sporulation
GSM49830	control
GSM49975	control
GSM49998	phosphate
GSM50000	phosphate
GSM50002	phosphate
GSM50003	phosphate
GSM50008	control
GSM50378	phosphate
GSM50472	phosphate
GSM51432	phosphate
GSM51433	phosphate
GSM51434	phosphate
GSM51435	control
GSM51436	phosphate
GSM51437	phosphate
GSM51438	phosphate
GSM51439	phosphate

GSM51440	phosphate
GSM51441	control
GSM51442	phosphate
GSM51443	phosphate
GSM51444	phosphate
GSM51445	phosphate
GSM51446	control
GSM51447	control
GSM51448	phosphate
GSM51449	phosphate
GSM51450	phosphate
GSM51451	control
GSM51452	control
GSM51453	phosphate
GSM51454	phosphate
GSM51455	phosphate
GSM51456	phosphate
GSM51457	control
GSM51458	control
GSM51459	phosphate
GSM51460	phosphate
GSM51461	phosphate
GSM70016	peroxide
GSM70017	peroxide
GSM70018	peroxide
GSM70019	peroxide
GSM70020	peroxide
GSM70021	peroxide
GSM70022	peroxide
GSM70023	peroxide
GSM70024	heat
GSM70025	heat
GSM70026	heat
GSM70027	heat
GSM70028	peroxide
GSM70029	heat
GSM70030	peroxide
GSM70031	heat
GSM70032	heat
GSM70033	peroxide
GSM70034	heat
GSM70035	peroxide
GSM70036	heat
GSM70037	heat
GSM70038	peroxide
GSM70039	peroxide
GSM70040	peroxide
GSM70041	peroxide
GSM70042	peroxide
GSM70043	peroxide
GSM70044	peroxide
GSM70045	peroxide
GSM70046	peroxide

CCN 1700 17	
GSM/004/	peroxide
GSM/0048	peroxide
GSM70049	peroxide
GSM70050	peroxide
GSM70051	peroxide
GSM70052	heat
GSM70053	peroxide
GSM70054	heat
GSM70055	peroxide
GSM70056	heat
GSM70057	peroxide
GSM70058	peroxide
GSM70059	heat
GSM70060	peroxide
GSM70061	peroxide
GSM70062	peroxide
GSM70063	peroxide
GSM70064	peroxide
GSM70065	peroxide
GSM70066	peroxide
GSM70067	peroxide
GSM70068	peroxide
GSM70069	peroxide
GSM70070	peroxide
GSM70071	peroxide
GSM70072	peroxide
GSM70073	peroxide
GSM70074	peroxide
GSM70075	peroxide
GSM70076	peroxide
GSM70077	peroxide
GSM70078	peroxide
GSM70079	peroxide
GSM70080	peroxide
GSM70081	peroxide
GSM70082	heat
GSM70082	nerovide
GSM70084	heat
GSM70085	neau
GSM70086	peroxide
GSM70087	peroxide
GSM70007	peroxide
CSM70020	peroxide
GSM70000	peroxide
GSM/0090	peroxide
GSM/0091	peroxide
GSM70092	peroxide
GSM70093	peroxide