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Figure S1: Mean distance within clusters and between clusters. The figure shows the distribution of
inter-cluster distances (closed circles) and intra-cluster distances (open circles), for the 286 clusters. All
distances are computed in trajectory space, using the Euclidean metric (vertical axis). The horizontal axis
indicates the 286 clusters, sorted based on inter-cluster distances. For analysing intra-cluster distances,
we computed pairwise distances between all the trajectories within a cluster. For analysing inter-cluster
distances, we computed the distance between the centres of each of the clusters. This analysis is a rough
measure of cluster quality; a higher separation between the two sets of distances is indicative of a better
clustering. For our models, we can indeed see a good separation of the clusters. Error bars (for one
standard error) are smaller than the symbols and hence not shown.
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Figure S2: (A) Distribution of the fraction of a genotype set occupied by the largest genotype
network, for all genotype sets. (B) Distribution of maximum genotype distance within the largest
genotype network of a set, for all genotype sets. Note that the maximum genotype distance has been
expressed as a fraction of genotype space diameter (18).
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Figure S3: Genotype networks that occupy a larger fraction of a genotype set extend further
through genotype space. (A) All genotype sets. (B) Large genotype sets.
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Figure S4: Larger genotype networks contain more robust genotypes. The top panel indicates the
distribution of genotype robustness for the three largest networks. The bottom panel indicates the same
distribution, but for three networks of smaller sizes. The total number of genotypes (circuits) in each
network is also indicated in the plots. Note the difference in scale for the vertical axis between the top
and bottom panels.
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Figure S5: (A) Phenotypes of larger genotype sets are more robust. (B) Genotype networks cor-
responding to robust phenotypes have greater network diameters. (C) Larger genotype networks
have a greater number of phenotypes in their neighbourhood. The panel shows the correlation
between phenotype evolvability and the size of the largest genotype network, for all genotype sets.
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(B) Genotype networks above median size
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Figure S6: Circuits with different phenotypes can be found close together in genotype space. The
figure shows the distribution of minimum genotype distance between genotype networks (A) of all sizes,
(B) above median size and (C) below median size. Only the largest genotype network for each phenotype
has been considered. The minimum distance between the genotype networks is computed as described
in the main text. The figure shows that the distances between smaller genotype networks are larger than
the distances between larger genotype networks. Thus, large genotype networks are especially close in
genotype space.
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Figure S7: Populations evolving on larger genotype networks can access more new phenotypes.
The largest genotype network from each of the large genotype sets were binned by size and the mean
number of unique phenotypes in the 1-neighbourhood of the entire population (after 100 generations)
has been indicated for the different bins. The error bars indicate one standard deviation. Mutation rate
per generation per individual: (A) µ = 0.10. (B) µ = 0.50. In all cases, population size N = 100.
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Figure S8: Phenotypic diversity in the neighbourhood of populations evolving on different geno-
type networks. The figure shows the progression with time of the number of unique phenotypes in the
neighbourhood of a population evolving on a genotype network (PU (t)), for population sizes of 100
(panel A) and 1000 (panel B). In the largest genotype network, many of the neighbours of a genotype
have the same phenotype; thus the 1-neighbourhood contains a large fraction of genotypes with the same
phenotype, and consequently fewer unique new phenotypes. For very small genotype networks, the size
of network’s 1-neighbourhood is smaller, and therefore the number of unique phenotypes in the neigh-
bourhood is also lower. For networks of intermediate size (1149 nodes in this example), the number
of phenotypes in the neighbourhood increases to the largest steady-state value. As one would expect,
for larger population sizes (panel B), we find a greater number of unique phenotypes in a population’s
neighbourhood. In all panels, the mutation rate per generation per individual was µ = 0.25. In both
(A) and (B), we consider the same set of genotype networks, with sizes as indicated in the sub-panel
headers. Note that the vertical scales are different for (A) and (B).
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V1 : Tip41p has two phosphorylation sites
V2 : Tap42p P©-Pph21/22p forms an anti-phosphatase protecting phosphoproteins
V3 : Complex formation of Tap42p P© and Tip41p
V4 : Complex formation of Tap42p P© and Tip41p P©

V5 : Pph21/22p is phosphorylated by Tor1/2p and dephosphorylated by PP2A1/2
V6 : Tap42p P©-Pph21/22p acts as a phosphatase
V7 : Specific catalytic constants for dephosphorylation of Tip41p P© by PP2A1/2
V8 : Tap42p P©-Sit4p forms an anti-phosphatase that protects phosphorylated proteins
V9 : Tap42p P©-Sit4p is a phosphatase
V10: Sit4p is phosphorylated by Tor1/2p and dephosphorylated by PP2As
V11: Tap42p has two phosphorylation sites
V12: PP2A1/2 form with Sit4p and Pph21/22p bound to Tap42P and dephosphorylate it
V13: Tap42p P© bound to Sit4p or Pph21/22p can be dephosphorylated by PP2A1/2
V14: Specific constants for dephosphorylation of Tap42p P© by PP2A1 / PP2A2
V15: Monomeric Sit4p is an active phosphatase for Tip41p P©

V16: Complex formation of Tap42p and Tip41p P©

V17: Complex formation of Tap42p and Pph21/22p
V18: Complex formation of Tap42p and Sit4p

Table S1: Variants of the mechanisms of TOR signalling. Each of these variants represents an alter-
nate mechanism for TOR signal transduction1. By combining more than one variant, several topological
variants of the core topology can be generated.

Description
1 Relative degree of Tap42p phosphorylation before and after the addition of rapamycin, in

wild type2.
2 Relative degree of Tap42p phosphorylation before and after the addition of rapamycin, in

∆cdc55/∆tpd3 mutants2.
3 Tap42p-Tip41p complex formation before and after the addition of rapamycin, in wild type3

4 Tap42p-Tip41p complex formation before and after the addition of rapamycin, in ∆sit4
mutants3

5 Tap42p-Sit4p complex formation before and after the addition of rapamycin, in wild type3

6 Tap42p-Sit4p complex formation before and after the addition of rapamycin, in ∆tip41
mutants3

7 The amount of Tap42p-Pph21/22p in wild type present in complexes relative to the overall
concentration4,5

8 The amount of Tap42p-Sit4p in wild type present in complexes relative to the overall con-
centration4,5

9 The amount of Sit4p-Sapp in wild type present in complexes relative to the overall concen-
tration4,5

10 Tap42p-Pph21/22p concentration after the addition of rapamycin, in wild type4

11 Level of phosphorylated Tip41p P© upon addition of rapamycin, in wild type1,3

Table S2: Experimental data on TOR signalling. A brief description of the experimental measure-
ments we used to compare the signalling behaviour of different model topologies to the canonical TOR
pathway.
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Expt. Species Strain Rapa-
mycin
(nM)

δ t
(min)

Value
(relative)

1 Tap42p P© WT 500 0.20 0 1.00
WT 500 0.20 15 0.49
WT 500 0.20 30 0.29
WT 500 0.20 60 0.12
WT 500 0.20 180 0.15

2 Tap42p P© ∆cdc55/∆tpd3 500 0.20 0 2.60
∆cdc55/∆tpd3 500 0.20 180 2.35

3 Tip41p-Tap42p WT 109 0.20 0 1.00
WT 109 0.20 30 5.43
WT 109 0.20 180 5.43

4 Tip41p–Tap42p ∆sit4 109 0.20 0 1.02
∆sit4 109 0.20 30 1.38
∆sit4 109 0.20 180 1.38

5 Tap42p P©-Sit4p WT 109 0.20 0 1.00
WT 109 0.20 30 0.40
WT 109 0.20 60 0.40

6 Tap42p P©-Sit4p ∆tip41 109 0.20 0 1.12
∆tip41 109 0.20 30 0.82
∆tip41 109 0.20 60 0.82

7 Tap42p-
Pph2122p/Tap42p(0)

WT 0 0.50 180 0.10

Tap42p-
Pph2122p/Pph2122p(0)

WT 0 1.00 180 0.02

8 Tap42p-Sit4p/Tap42p WT 0 0.50 180 0.10
Tap42p-Sit4p/Sit4p WT 0 1.00 180 0.05

9 Sit4p-Sapp/Sit4p WT 0 1.00 180 0.60
Sit4p-Sapp/Sapp WT 0 0.83 180 0.15

10 Tap42p-Pph2122p WT 109 1.00 0 1.00
WT 109 1.00 30 0.40
WT 109 1.00 60 0.40

11 Tip41p P© WT 109 1.00 180 0.10

Table S3: Experimental data points used for parameter estimation. These data were obtained from
multiple experiments1–5, as detailed in Table S2 and ref. 1. WT=Wild-type.
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