Using logic programming for modeling the one-carbon metabolism network to study the impact of folate deficiency on methylation processes

Gnimpieba et al.

SUPPLEMENTARY MATERIAL

Illustration of parameters identification.

For illustration purpose, we propose herein to perform the parameter estimation on the Methionine Synthase (MS) reaction. It implies three BK describe as follow: BK₁: *"healthy human plasma homocysteine amount extended between 5 and 15 \muM" (53)*

$$F_1 = \{ Organism(human), State(healthy), Param(Hcy), ValP(Hcy, 15, \mu M) \}$$

which expresses five distinct facts: (i) human is an organism, (ii) healthy is a state, (iii) Hcy (homocysteine) is a parameter, (iv) Hcy can take value $5\mu M$ or (v) $15 \mu M$.

$$R_{1} = \begin{cases} [Organism(human), Organ(Blood), Tissu(Plasma), State(healthy)] \\ \Rightarrow [ValP(Hcy) \le 15 \mu M] \end{cases}$$

 R_1 suggest to express these facts by the following semantic, "*if* the cell is from a healthy human organism and plasma tissue, *then* homocysteine amount extend between 5 and 15µM".

From now, KB contains the first knowledge BK_1 with fact base $FB=F_1$; and rule base $RB=R_1$). If we take a second biological knowledge BK_2 in literature, we obtained:

BK₂:"In human crude cell, specific activity of methionine synthase reaction (MS) is 2.53µmol/min/mg at 37°C temperature"

$$F_{2} = \begin{cases} Organism(human), Temperature(37), Cell(crude), \text{Re} action(MS), \\ Param(Kcat_{MS}), ValP(Kcat_{MS}, 2.53, mol*(\min*mg)^{-1})) \end{cases}$$
$$R_{2} = \begin{cases} [Organism(human), Temperature(37), Cell(crude), \text{Re} action(MS)] \\ \Rightarrow ValP(Kcat_{MS}, 2.53, mol*(\min*mg)^{-1}))] \end{cases}$$

Then the rule base RB become

$$RB \lor R_{2} = \begin{cases} [Organism(human), Temperature(37), Cell(crude), \text{Re} action(MS) \\ \Rightarrow ValP(Kcat_{MS}, 2.53, mol * (\min^{*} mg)^{-1}))]; \\ [Organism(human), Organ(Blood), Tissu(Plasma), State(healthy)] \\ \Rightarrow [ValP(Hcy) \le 15\mu M] \end{cases}$$

By now, KB contains 5 facts and 3 rules extracted from the literature. For consolidation, we add anothe constraint from the Michaelis and Menten kinetic reaction stipulating that

 $V_m = K_{cat} * E_0$ where V_m , K_{cat} , and E_0 are respectively the maximal velocity, the catalytic constant and the initial amount of the enzyme which catalyse the given reaction. We then have:

BK₃: "Reaction MS is Michaelis Menten reaction type, $V_{m_MS}=K_{cat_MS}*E_{0_MS}$ "

 $F_{3}=\{Param(V_{m_MS}), Param(E_{0_MS})\}$

 $R_3 = \{V_m = K_{cat_MS} * E_{0_MS}\}$

At the end, we obtain $KB = BK_1 + BK_2 + BK_3 = \{FB: F_1VF_2VF_3, RB: R_1VR_2VR_3\}$

Experimental condition is a five item given row concerning in order, the organism name, organ name, cell type, physiological state, the optimum pH value, and temperature. For example:

ExpCond=(Organism,Organ,Cell,State,pH,Temperature)

ExpCond₁=(human,liver,HepG2,healthy,7.5,37).