1	Electronic Supplementary Information
2	
3	Development of a novel non-radioactive cell-based method for the screening of
4	SGLT1 and SGLT2 inhibitors using 1-NBDG
5	
6	Hung-Chi Chang, Su-Fu Yang, Ching-Chun Huang, Chung-Shen Lin, Pi-Hui Liang, Chun-Jung Lin,
7	Lih-Ching Hsu [*]
8	
9	School of Pharmacy, National Taiwan University, Taipei, Taiwan
10	
11	*Corresponding author: LC. Hsu, School of Pharmacy, National Taiwan University, 12F, No. 1,
12	Section 1, Jen-Ai Road, Taipei 10051, Taiwan. Phone: +886-2-2322-3152; Fax: +886-2-2391-9098.
13	e-mail: <u>lhsu@ntu.edu.tw</u>
14	

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is O The Royal Society of Chemistry 2013

26 **Supplementary Figure 2** Optimization of uptake buffers and lysis solutions. (A) The effect of uptake 27 buffers on 1-NBDG fluorescence. 1-NBDG was dissolved in deionized water, sodium buffer or 28 choline buffer. Sodium or choline buffer did not affect 1-NBDG fluorescence. (B) Background 29 fluorescence of cell lysis solutions. All the solutions tested showed relatively low background 30 fluorescence. Among them, solution C (RIPA buffer) had the highest and solution F (0.2 N NaOH + 31 0.2 N HCl) had the lowest background fluorescence. (C) Fluorescence of 1-NBDG at 10 µM in cell 32 lysis solutions. 1-NBDG fluorescence intensities were relatively high in solutions B, C, D, and F; but 33 dramatically quenched in solutions A and E. Intermediate fluorescence intensity of 1-NBDG was 34 detected in solution G. Solution F (0.2 N NaOH + 0.2 N HCl) was selected as the lysis solution for 35 1-NBDG uptake assay based on low background fluorescence and high 1-NBDG fluorescence. 36 Solutions A and E were excluded because of a quenching effect. Solutions B, C and D were also 37 excluded because the presence of detergents may interfere with protein assay. Experiments were 38 performed in triplicate and data are presented as mean ± S.E. Cell lysis solutions used in (B) and (C):

- A. homogenization buffer: 7.5 mM Na₂HPO₄, 1 mM EDTA, pH 7.4; B. L-buffer: PBS with 0.1%
- 40 NP-40 and 0.1% Triton X-100; C. RIPA buffer: 50 mM Tris, pH 8.0, 150 mM NaCl, 0.1% SDS, 0.1%
- 41 sodium deoxycholate, 1% NP-40; D. 1% Triton X-100 in deionized water; E. 0.2 N NaOH; F. a
- 42 mixture of equal volumes of 0.2 N NaOH and 0.2 N HCl; G. a mixture of equal volumes of 0.2 N
- 43 NaOH and 0.2 N HCl, adjusted to alkaline pH with 1/10 volume of 1 M Tris, pH 9.8.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013

55 **Supplementary Table 1** IC₅₀ values of phlorizin for hSGLT1.

IC ₅₀ (μΜ)	Reference	
0.11	Chang et al., using ¹⁴ C-AMG	
0.11	Chang et al., using 1-NBDG	
0.33	Meng et al. (2008)	
0.17	Pajor et al. (2008)	
0.2	Sato et al. (2007)	
0.21	Tahara et al. (2012)	

56

57 Summary of published phlorizin IC₅₀ values for hSGLT1. The IC₅₀ values acquired from our

58 non-radioactive cell-based assay system are very close to the published results obtained using

- 59 ¹⁴C-AMG.
- 60

61 **Supplementary Table 2** IC₅₀ values of the selective SGLT2 inhibitor dapagliflozin for hSGLT2 and

62 hSGLT1.

IC ₅₀	(nM)	Solootivity	Poforonco
hSGLT2	hSGLT1	Selectivity	Relefence
1.86	880	473	Chang et al., using 1-NBDG
4	370	92.5	Li et al. (2011)
6	400-800	67-133	Hummel et al. (2012)
6.7	885	132	Xu et al. (2009)
1.1	1390	1200	Meng et al. (2008)

63

64 Summary of published IC₅₀ values of dapagliflozin for hSGLT2 and hSGLT1. The results acquired

65 from our non-radioactive cell-based system are within the range of the published data obtained using

 $66 \, ^{14}$ C-AMG.

68 Supplemental References

- 69
- C. S. Hummel, C. Lu, J. Liu, C. Ghezzi, B. A. Hirayama, D. D. Loo, V. Kepe, J. R. Barrio and E. M.
 Wright, *Am. J. Physiol. Cell Physiol.*, 2012, 302, C373–382.
- 72 A. R. Li, J. Zhang, J. Greenberg, T. Lee and J. Liu, *Bioorg. Med. Chem. Lett.*, 2011, 21, 2472–2475.
- 73 W. Meng, B. A. Ellsworth, A. A. Nirschl, P. J. McCann, M. Patel, R. N. Girotra, G. Wu, P. M. Sher,
- E. P. Morrison, S. A. Biller, R. Zahler, P. P. Deshpande, A. Pullockaran, D. L. Hagan, N. Morgan, J.
- 75 R. Taylor, M. T. Obermeier, W. G. Humphreys, A. Khanna, L. Discenza, J. G. Robertson, A. Wang, S.
- 76 Han, J. R. Wetterau, E. B. Janovitz, O. P. Flint, J. M. Whaley and W. N. Washburn. J. Med. Chem.,
- 77 2008, **51**, 1145–1149.
- A. M. Pajor, K. M. Randolph, S. A. Kerner and C. D. Smith, *J. Pharmacol. Exp. Ther.*, 2008, 324,
 985–991.
- 80 S. Sato, J. Takeo, C. Aoyama, and H. Kawahara, *Bioorg. Med. Chem.*, 2007, 15, 3445–3449.
- 81 A. Tahara, E. Kurosaki, M. Yokono, D. Yamajuku, R. Kihara, Y. Hayashizaki, T. Takasu, M.
- 82 Imamura, L. Qun, H. Tomiyama, Y. Kobayashi, A. Noda, M. Sasamata and M. Shibasaki, Naunyn
- 83 Schmiedebergs Arch. Pharmacol., 2012, **385**, 423–436.
- 84 **B. Xu**, B. Lv, Y. Feng, G. Xub, J. Du, A. Welihinda, Z. Sheng, B. Seed and Y. Chen, *Bioorg. Med.*
- 85 *Chem. Lett.*, 2009, **19**, 5632–5635.