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Size of quorum sensing communities
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Cylindrical colony, reflective boundary

In this supplementary we will derive the steady state concen-
tration of a circular colony with radius 7o = R and height
zp = H growing on a signal-reflecting surface. The signal
concentration is denoted s, D its diffusion constant, and kg
the intracellular signal production rate per volume. When p,
is the (v/v) cell density the volume normalized production is
k(r,z) = py(r, 2)ks(r, 2).

The steady state diffusion equation in cylindrical coordi-
nates (assuming rotational symmetry) reads
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where k(r, z) is the source term, which is assumed to be ho-
mogeneous in the colony, k(r, z) = kf(zg — 2)0(ro — r) and
O(x) is the Heaviside unit step function. Eq. (27) is most
easily solved by using the Hankel transformation (of order
zero)33.
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where Jy(x) is the Bessel function of order 0. A useful prop-
erty of the Hankel transformation is

F(f"+r7 ) a) = —*F(f)(a) = —¢* ()
Applying the Hankel transformation to (27) therefore gives
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where
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Set A(qro) = [,/"° Jo(z)zdz, so
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The solution to the homogeneous part of (29) is
$n(g, 2) = alg)e™ " + b(q)e?

where a and b are integration constants. The particular solu-
tion can be chosen as
k6(z0 — 2)A(gro)
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The full solution therefore becomes

5(q,2) = a_(q)e™ ¥ +b_(q)e?” + %ZIO) ,z < 29
at+(q)e” 7 + by(q)e? L2 > 20
(30)

The integration constants are determined from the boundary
conditions. Since § — 0 for z — oo, we have by (q) = 0. The
reflective boundary condition gives
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The two pieces of the solution has to be continuous with con-
tinuous derivative at z = 2. This second condition implies
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The first condition gives
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Inserting into (30) we obtain
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For convenience we define
I (q,2)=2— e—4(z+20) _ na(z—20)

I (q,2) = e~ 4(z=20) _ g—a(z+z0)
To obtain
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we need to apply the inverse Hankel transformation again.
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Using that A(gro) = groJ1(qro), we finally get
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Note that 11 (q,z) > 0 and I.(q,2) = 2qz0 + O(¢?). This
ensures that s is well-defined (J1(x) = O(z)) and positive.
To make the dimensionality of (31) clearer, set z = qrg, r’ =
r/ro, 2 = z/rg and z{, = zo/ro (aspect ratio) to obtain
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The integral in (32) can be evaluated in specific points. At the

top, ' = 0, 2’ = z{, we have
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At the border of the supporting surface, ' = 1,2’ = 0, we get
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Finally, in the center, we have
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Note that in all points the algebraic prefactor is of order unity.
In order to get the expression needed for a thin biofilm in the
main text, recall that zo = H, rg = R, and k = p, k. Specif-
ically the last equation reads

5(0,0) =2 H<KR (33)
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