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Cylindrical colony, reflective boundary

In this supplementary we will derive the steady state concen-
tration of a circular colony with radius r0 = R and height
z0 = H growing on a signal-reflecting surface. The signal
concentration is denoted s, D its diffusion constant, and κs
the intracellular signal production rate per volume. When ρv
is the (v/v) cell density the volume normalized production is
k(r, z) = ρv(r, z)κs(r, z).

The steady state diffusion equation in cylindrical coordi-
nates (assuming rotational symmetry) reads
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where k(r, z) is the source term, which is assumed to be ho-
mogeneous in the colony, k(r, z) = kθ(z0 − z)θ(r0 − r) and
θ(x) is the Heaviside unit step function. Eq. (27) is most
easily solved by using the Hankel transformation (of order
zero)33.

f̃(q) = F(f)(q) =

∫ ∞
0

f(r)J0(qr)r dr

where J0(x) is the Bessel function of order 0. A useful prop-
erty of the Hankel transformation is

F(f ′′ + r−1f ′)(q) = −q2F(f)(q) = −q2f̃(q)

Applying the Hankel transformation to (27) therefore gives
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Set A(qr0) =
∫ qr0
0

J0(x)xdx, so
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The solution to the homogeneous part of (29) is

s̃h(q, z) = a(q)e−qz + b(q)eqz

where a and b are integration constants. The particular solu-
tion can be chosen as

s̃p(q, z) =
kθ(z0 − z)A(qr0)

Dq4

The full solution therefore becomes

s̃(q, z) =

{
a−(q)e−qz + b−(q)eqz + kA(qr0)

Dq4 , z < z0
a+(q)e−qz + b+(q)eqz , z > z0

(30)

The integration constants are determined from the boundary
conditions. Since s̃→ 0 for z →∞, we have b+(q) = 0. The
reflective boundary condition gives

∂s̃(0)

∂z
= 0 ⇒ a−(q) = b−(q)

The two pieces of the solution has to be continuous with con-
tinuous derivative at z = z0. This second condition implies

a−(q)(eqz0 − e−qz0) = −a+(q)e−qz0

⇒ a+(q) = a−(q)(1− e2qz0)

The first condition gives

a−(q)(e−qz0 − eqz0) = a−(q)(e−qz0 + eqz0) +
kA(qr0)

Dq4

⇒ a−(q) = −kA(qr0)e−qz0

2Dq4

Inserting into (30) we obtain

s̃(q, z) =
kA(qr0)

2Dq4

{
2− e−q(z+z0) − eq(z−z0) , z < z0
e−q(z−z0) − e−q(z+z0) , z > z0

For convenience we define

I−(q, z) = 2− e−q(z+z0) − eq(z−z0)

I+(q, z) = e−q(z−z0) − e−q(z+z0)

To obtain

s(r, z) =

{
s−(r, z) for 0 ≤ z ≤ z0
s+(r, z) for z > z0
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we need to apply the inverse Hankel transformation again.

s±(r, z) =
k

2D

∫ ∞
0
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q4
I±(q, z)J0(qr)qdq

Using that A(qr0) = qr0J1(qr0), we finally get

s±(r, z) =
kr0
2D

∫ ∞
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Note that I±(q, z) > 0 and I±(q, z) = 2qz0 + O(q2). This
ensures that s is well-defined (J1(x) = O(x)) and positive.
To make the dimensionality of (31) clearer, set x = qr0, r′ =
r/r0, z′ = z/r0 and z′0 = z0/r0 (aspect ratio) to obtain
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2D
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where

I−(x, z′) = 2− e−x(z
′+z′

0) − ex(z
′−z′

0)

= 2
(
1− e−xz

′
0 cosh(xz′)

)
I+(x, z′) = e−x(z

′−z′
0) − e−x(z

′+z′
0)

= 2e−xz
′
sinh(xz′0)

The integral in (32) can be evaluated in specific points. At the
top, r′ = 0, z′ = z′0 we have
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At the border of the supporting surface, r′ = 1, z′ = 0, we get
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Finally, in the center, we have
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Note that in all points the algebraic prefactor is of order unity.
In order to get the expression needed for a thin biofilm in the
main text, recall that z0 = H, r0 = R, and k = ρvκs. Specif-
ically the last equation reads

s(0, 0) = 2
κsRHρv

2D
,H � R (33)
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