1 Transfection activity and mechanism of pDNA-complexes based on the hybrid of 2 low-generation PAMAM and branched PEI-1.8k

- 3 Duanwen Cao, Linghao Qin, Huan Huang, Min Feng, Shirong, Pan*, and Jianhai Chen*
- 4 Department of Pharmaceutical Science, Nanfang Hospital, Southern Medical University and
- 5 Cardiovascular Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou
- 6 510080, China
- 7 8

SUPPLEMENTARY DATA

9 1. Synthesis procedures of PAPEs

10

11

Scheme 1. Synthesis procedures of PAPEs.

12 2. Characterization of PAMAM G1.5 and PAMAM G 2.5

PAMAM G1.5 and PAMAM G2.5 dendrimers with EDA as the core were prepared according to the procedures reported by Tomalia and Wu.^{1,2} After purification, they were characterized by FTIR and ¹H NMR. As given in Fig. S1, the peaks at about 3305 cm⁻¹ (NH), 2953 and 2830 cm⁻¹ (CH stretch), 1736 cm⁻¹ (C=O), 1257 cm⁻¹ (C-O), 1650 and 1540 cm⁻¹

8 9

10

11 **Fig. S2.** The ¹H NMR spectra of (A) PAMAM G1.5, (B) PAMAM G2.5

12 **3. Free PAPE effects**

Previous reports have proved that at N/P=3-4, almost all DNA is complexed with PEI.³⁻⁶ At N/P = 6 not all PEI is bound in the complexe and some free PEI exists.^{5,7} However, at N/P>4 the transfection efficiency still increased continually. For example, PEI-25k complexes at N/P=10 showed its highest efficiency. Yue et al. preformed a gene transfection in the absence of serum with PEI complexes prepared at N/P=10, which has a N/P=3 portion corresponding to complexed PEI fraction plus a N/P=7 portion corresponding to the free PEI. In comparison

1	with PEI complexes at the $N/P= 3$, the transfection efficiency in the presence of free PEI was
2	greatly increased.8 This fact clearly suggested that addition of free PEI would improve
3	transfection in the absence of serum. In our study, the similar result was also obtained. In the
4	Fig. 4A, the transfection efficiency of PAPE complexes at N/P=25 was higher than that at
5	N/P=13. The amount of free PAPE in the complexes at N/P=25 was larger than that at N/P=13.
6	Likewise, as shown in Fig. 4B, the transfection efficiency of PAPE complexes at N/P= 75 or
7	90 was higher than that of at N/P=45. Therefore, these indirectly proved that addition of free
8	PAPE would also improve the transfection efficiency in absence/presence of serum. In
9	addition, to directly confirm free PAPE in the complexes could improve the transfection
10	efficiency of PAPE/pDA complexes in the presence of serum, we performed a cell
11	transfection with a combination of PAPE-2 complexes fixed at the N/P ratio of 25 and
12	varying amount of free PAPE-2 which was added into complexes at the time of transfection.
13	The total amount of PAPE-2 in each combination was equal to complexes prepared at N/P
14	ratios of 75 and 90, respectively. As shown in Figure S3, transfection efficiency of PAPE-2
15	complexes at N/P=25 in the presence of different amount of free PAPE-2 was significantly
16	higher than that of PAPE-2 complexes at N/P=25 alone ($P < 0.01$, n=3), but was lower than
17	that of corresponding control. These results indicated free PAPE-2 in the complexes could
18	make some contribution to the improved efficiency in the presence of serum.

2 Fig. S3. The transfection efficiencies of PAPE-2 complexes at the N/P ratio of 25 in the

3 presence of various amount of free PAPE-2. PAPE-2 complexes at N/P = 25, 75 and 90 were

- 4 used as controls.
- 5

1

6 References

- 7 1. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J.
- 8 Ryder, P. Smith, *Macromolecules*, 1986, **19**, 2466-2468.
- 9 2. H. M. Wu, S. R. Pan, M. W. Chen, Y. Wu, C. Wang, Y. T. Wen, X. Zeng, C. B. Wu,
- 10 *Biomaterials*, 2011, **32**, 1619-1634.
- 3. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, E. Wagner, *Gene Ther.*, 1999, 6,
 595-605.
- 13 4. P. Erbacher, T. Bettinger, P. Belguise-Valladier, S. Zou, J. L. Coll, J. P. Behr, J. S.
- 14 Remy, J. Gene Med., 1999, 1, 210-222.
- 5. Z. Dai, T. Gjetting, M. A. Mattebjerg, C. Wu, T. L. Andresen, *Biomaterials*, 2011,
 32, 8626-8634.
- 17 6. R. Kircheis, S. Schüller, S. Brunner, M. Ogris, K. H. Heider, W. Zauner, E. Wagner,
- 18 J. Gene Med., 1999, **1**, 110-122.
- 19 7. S. Boeckle, K. von Gersdorff, S. van der Piepen, C. Culmsee, E. Wagner, M. Ogris,
- 20 J. Gene Med., 2004, 6, 1102-1111.
- 8. Y. Yue, F. Jin, R. Deng, J. Cai, Z. Dai, M. C. Lin, H. F. Kung, M. A. Mattebjerg, T.
- 22 L. Andresen, C. Wu, J. Control Release, 2011, 152, 143-151.