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Supplementary Information

Gene Regulatory Network construction

We constructed the GRN culling information from EcoCyc, RegulonDB, BiGG and OU Gene expression
databases. Table S1 indicates the reactions in CMP, enzymes, genes and transcription factors that
regulate the genes. The ↑ signifies up regulation and the ↓ signifies down regulation.

Enzyme Abbreviations

The enzyme abbreviations for the GRN specified in Figure 1 in the main text is enlisted in Table S2
along with the enzyme commission codes.

Modeling of molecular mechanisms in SSGES

First, we describe the steady state mathematical expressions for a simple regulatory mechanism compris-
ing of a monomer transcription factor binding to DNA and then the mathematical expressions correspond-
ing to various other mechanistic schemes is presented in Table S3. Consider the following interactions -
A regulatory protein ’I’ in monomer form binds to the operator site ’O’and forms complex ’OI’. Kd is
the dissociation constant for the interaction. Upon formation of the complex ’OI’, gene expression may
ensue. We represent this interaction as:

O + I 
 OI,Kd (1)

At steady state, equilibrium relationship and mass balance for operator site and inducer molecules are
as shown below. The subscript ’t’ denotes total amount of the species including its free and bounded
form(s).

Kd =
O × I

OI
(2)

Ot = O +OI (3)

It = I +OI (4)

Unless stated otherwise, same symbol as that of a species is used to indicate its concentration. Since gene
expression will ensue when the inducer-operator site complex is formed, we define fractional expression
or probability of expression ’f ’ as the ratio of the concentration of protein-DNA complex to the total
operator concentration.

f =
OI

Ot
(5)

For any given gene expression regulation mechanism, such steady state mass balance expressions can be
derived. Further, the value of ’f ’ can be obtained analytically for simple cases and numerically for larger
and complex systems. A similar example of a transcription factor dimerizing and then binding to DNA
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is presented in the Methods section of the main paper. It should be noted that multiple mechanisms may
operate together and a transcription factor can interact with several genes to yield a governing equation
which is quite complex. To automate the process, we have developed a simulator, ‘Steady State Gene
Expression Simulator’ (SSGES), which generates a set of equations given the topology of interactions in
a GRN. The workflow of SSGES is presented below.

SSGES Workflow

Figure S1. Overview of SSGES work flow1. (A) Gene Gg1 is regulated by protein Pa1. Gene
Gg3 is positively autoregulated. Gene Gg2 is regulated positively by product of gene Gg3 and
negatively by a complex of the product of gene Gg1 and Pn. (B) Input file to SSGESthe text succinctly
lists all genes, various proteins and interactions along with associated parameters for the GRN shown in
(A). (C) SSGES generated MATLAB code files corresponding to the input file. (D) Graphical
resultsthe graph shows probability of gene expression for genes Gg1, Gg2, Gg3 v/s Pa1 concentration.
The profiles are consistent with respect to the underlying regulatory structure. With increase in Pa1
concentration, Gg3 shows sustained transcriptional probability, Gg1 shows S shaped rise in
transcriptional probability and Gg2 shows decrease in transcriptional probability.

Figure S1 depicts an overview of SSGES workflow1. The network shown in example has three genes,
viz. Gg1, Gg2, Gg3. Gg1 and Gg3 have single binding sites. Gg2 has two binding sites as indicated
by suffix s1 and s2 in the input file. Gg1 is regulated by protein Pa1. The functional product of Gg1
is protein Pg1. Protein Pg1 and protein Pn interact and form a complex Pg1 Pn. Gene Gg2 has two
operator sites. The protein complex Pg1 Pn binds at one of the operator sites and cause repression. Gene
Gg3 is autoregulated protein. Functional product of Gg3 is the protein Pg3. It binds at the operator site
of Gg3 and induces its own expression. Protein Pg3 also bind at the second site of gene Gg2 and induce
its expression.
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1. Part A of Figure S1 shows the schematic input network structure representing various regulatory
interactions along with the necessary parameters. The user converts such a network structure into
simple text based representation as shown in Part B.

2. The simulator sets up steady state algebraic equations for the given input file containing the network
structure and the parameter values. Molar balances are set up for all the species in the network
including all the complexes arising from DNA-protein and protein-protein interactions. Further,
all the concentrations of the complexes are related through equilibrium dissociation constants to
the free species concentrations. Part C of Figure S1 shows the code files generated by SSGES.
The simulator generates three files: (a) main file, (b) guess function file and (c) final solution
function file. Main file contains all the declarations, function calls, iteration loops and data storage
instructions. Guess file is the function file that generates good initial guess values for solution.

3. The set of algebraic equations generated by SSGES are solved on MATLAB platform using fsolve
and lsqnonlin routines. The simulator uses lsqnonlin to generate initial guesses and uses fsolve
to rapidly converge to a final solution. This capacity in the simulator provides faster solution to
the algebraic steady state equations. The transcriptional and translational expressions and protein
levels in the GRN forms the simulator output.

4. Resultant data can be graphically plotted and analyzed as shown in Figure S1. Upon viewing the
graphical results user may make desired changes in the input file and study the effect of changes in
regulatory structure on the expression of a specific gene.

This simulator was used to quantify the GRN for central metabolic pathway of E. coli under anaerobic
condition. The input to SSGES simulator (see Supplementary Data 4 with file network.txt) enlists all
the protein-protein, protein-DNA, auto-regulation, multiple site binding interactions found in the GRN.
SSGES generates the molar balance equations (see Supplementary Data 4) in files module.m compris-
ing of 901 equilibrium constants and module fun.m comprising of 148 equations with the guess function
file module guess.m. The model was solved in MATLAB (version 7.10, Mathworks Inc.). The steady
state model consisted of following unknown parameters - (i) the TF-operator site equilibrium interaction
constant Kd (there are 920 unknown Kd values) and (ii) the TF-TF equilibrium constants (there are 7
unknown values). SSGES is written in MATLABTM version 7.10v(Mathworks Inc., USA). The model
was solved to obtain fractional gene expression for the deletion mutants and log fold changes were com-
puted using the expression for wild type for the same parameters. The log fold changes were compared
with the reported microarray experiments and the model was tuned by varying the parameters until
a good match (correlation > 80%) was found. We have previously validated the output of SSGES by
simulating small GRNs such as the lac operon2, tryp operon3, λ− phage4 and the GAL network5.

Perturbation Analysis

The tunable parameters are the equilibrium constants (Kd) for all interactions and the maximum protein
concentrations (Pmax) for all the proteins associated with the genes in the GRN. Here we perturb these
parameters globally and study the sensitivity of gene expression for those genes that directly control the
central metabolic pathway under anaerobic conditions.

Equilibrium constant perturbation

We perturbed the values of the dissociation constants for all those interactions that involve the transcrip-
tion regulators of interest, fnr, arca, ihfa-b and dpia. There were 636 interactions that involved these
transcriptional regulators. We perturbed the values of equilibrium constants of all these interactions
uniformly randomly within the range 10±2 around the tuned value. That is, if the tuned Kd is equal
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to 10−9 then, the perturbation range was [10−7, 10−11]. We performed 50 perturbations and computed
the root mean square error (RMSE) difference between perturbed and tuned fractional gene expression
values for all the genes controlling Central Metabolic Pathway (CMP) in wild type (WT). For ∆fnr,
∆arca and ∆arca− fnr mutants, we measure the difference between log fold change in gene expression
values for the perturbed system of equations and microarray experiments.

Figure S2. Effect of perturbing equilibrium constant and maximum protein concentration
on gene expression for wild type E. coli. (A) Kd perturbation. (B) Pmax perturbation. It is clear
from the parametric perturbation that the glycolytic enzymes are robust while the mixed acid enzymes
are sensitive to perturbations. Most of the TCA cycle enzymes are also robust to perturbations. This
implies that the genes involved in central metabolism of glucose yield robust expression.

For WT (see Figure S2A) , we notice that the genes pta, acka (acetate synthesis) and ldha (lactate
dehydrogenase) are found to be highly sensitive to perturbation altering the gene expression values
significantly by 70%. Genes acee-f (pyruvate dehydrogenase, frda-d (succinate coA synthesis) and adhe
(alcohol dehydrogenase) were sensitive by 20-30% and genes glta, acnb, ppc and pflb were sensitive up to
20% and the remaining below 10%.

For ∆fnr mutant, we observe from Figure S3 that the most sensitive genes to perturbation were
suca-d with the RMSE increase of 30 while the rest the RMSE was below 10. For the ∆arca mutant,
we observe that the highly sensitive genes are suca-d, fumc (fumarase) which are part of TCA cycle,
zwf (in Pentose pathway responsible for G6P dehydrogenase) and ldha. Further in the double mutant
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Figure S3. Effect of perturbing equilibrium constant Kd for ∆fnr, ∆arca and ∆arca− fnr
mutants. The log fold gene expression values was compared to microarray experimental values.
Perturbation in transcription factor deletion mutants yielded higher root mean square error relative to
the expression in the experiment microarray data. The expression of glycolytic enzymes were found to
be robust as in WT, while the TCA cycle genes were sensitive indicating the pivotal role of
transcriptional factors in these genes. ∆arca had a lesser RMSE compared to ∆fnr. The double
mutant ∆arca− fnr demonstrated higher RMSE indicating the additive effect.

∆arca − fnr, we notice that genes pta, acka are very highly sensitive (RMSE > 50) and genes suca-d,
zwf and fumc are sensitive (RMSE upto 20) and genes acna, glta, lpd (TCA cycle) and genes acee and
acef are less sensitive (upto RMSE 10).

Maximum protein value perturbation

Similar to perturbation of equilibrium constant in the previous section, we perturbed the maximum
protein concentration of all the genes that are regulated by the transcription regulators FNR, ARCA,
IHFA-B and DpiA. For the wild type, we plot the RMSE for fractional gene expression values between
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Figure S4. Effect of perturbing maximum protein concentration Pmax for ∆fnr, ∆arca and
∆arca− fnr mutants. The log fold gene expression values was compared to microarray experimental
values. The perturbation in the maximum protein concentration yielded lesser RMSE as compared to
that in the dissociation constant (Kd, see Figure S3. The variation was marginal in the expression of
glycolytic genes as compared to the others.

perturbed and tuned models for all the genes involved directly in the CMP under anaerobic conditions
in Figure S2B. For the mutants, we plot the RMSE for log fold change in values between the perturbed
and the tuned models in Figure S4.

For the wild type (see Figure S2B, we observed the genes frda-d, adhe and pflb have a higher sensitivity
70-75% compared to other genes. Genes ppc, pta, acka and glta were lesser sensitive 20% while all other
genes were less than 10% sensitive.

In Figure S4, we observe that the ∆arca mutant was less sensitive compared to ∆fnr and ∆arca−fnr
mutants by a factor of 2. The mutants displayed a higher sensitivity with ∆arca− fnr mutant showing
highest sensitivity with pta and acka genes.
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Sensitivity of correlation of SSGES logfold prediction and mi-
croarray experiments with co-response coefficient

Figure S5. Sensitivity of Pearson’s correlation coefficient for varying coresponse coefficient
values. The parameter n in Equation 6 in the Methods section of the main paper was perturbed. It
was found that the value of the fold change in expression changed by only 10-13% and the trends in the
profile of gene expression was also unaltered. This indicates that, although different genes have varying
co-response coefficient (i.e. n), a single average value will suffice to predict the microarray data since
the expression is not sensitive to the value of n. ngle average value will suffice to predict the microarray
data ince the expression is not sensitive to the value of n.

On an average, the co-response coefficient, n, for prokaryotes is close to 16. We studied the sensitivity
of correlation coefficient for different values of coresponse coefficients. We varied n uniformly randomly
in the intervals (0.5-2 and 0.5-5). For 1000 iterations, we computed the mean and standard deviation of
correlation coefficients and plotted them in Figure S5. We also computed the relative change of correlation
when n=1 (our case). The results indicate that the change is less than 10% (trends are preserved) for
(0.5 - 2) range and less than 13.3% for (0.5 -5) range again maintaining the trends.

Supplementary Data 1

This is a Excel Spreadsheet (‘SupplementaryData1.xls’ ) and comprises of WT fractional gene expression
and fold changes for the mutants ∆fnr, ∆arca and ∆arca−fnr and the microarray experimental values
corresponding to the genes shown in Figures 2A and 3. In addition, it also consists of the predicted log
fold changes with respect to wild type for all sixteen mutants of key transcription regulators FNR, IHF,
DpiA and ArcA.

Supplementary Data 2

This is an Excel Spreadsheet (‘SupplementaryData2.xls’ ) and comprises of WT fractional expression for
the modified GRN that do not model molecular mechanisms. It also contains the log fold changes as
predicted by the modified GRN for all sixteen mutants corresponding to Figures 1B, 4A and 4B.
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Supplementary Data 3

This Excel Spreadsheet (‘SupplementaryData3.xls’ ) contains the sequence codes corresponding to genes
ldha, ihfa-b, fnr, arca and dpia and corresponding names of all organisms that contain them in that order.
This file is input to the clustalw package for multiple sequence alignment to generate the phylogenetic
tree as shown in Figure 8 in the main paper.

Supplementary Data 4

The text file ‘network.txt’ comprises of all regulatory interactions along with the required parameters
in the GRN. The equlibrium constants are defined in the file ‘module.m’, a MATLAB file generated
by SSGES. The initial guesses are generated using lsqnonlin routine of MATLAB and are defined in
‘module1 guess.m’. The file ‘module1 fun.m’ sets up the molar balances and calls fsolve to obtain the
solution.
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Tables

Table S1. Genes and transcription regulators for reactions in CMP

Pathway Reactions Enzymes Genes TR

Glycolysis PEP 
 G6P + Pyr PTS Enzymes I ptsI, ptsH, CRP↑
crr, malX

G6P 
 F6P Phosphoglucose isomerase pgi SoxS↑
F6P + ATP ⇀ F16P Phosphofructokinase I,II pfkA, pfkB FruR↓

F16P 
 DHAP + G3P Fructose-biphosphate fbaA CRP, FruR↓
alodolase I,II

DHAP 
 G3P Triose phosphate isomerase tpiA FruR↓
G3P 
 DPG + NADH Glyceraldehyde-3-phosphate gapA CRP↑, FruR↓

dehydrogenase
DPG 
 3PG + ATP Phosphoglycerate Kinase pgk CRP↑, FruR↓

3PG 
 2PG 2,3-bisphosphoglyerate grmM FruR↓
mutase

2PG 
 PEP Enolase eno FruR
PEP ⇀ Pyr + ATP Pyruvate kinase pykF, pykA FruR↓, FNR↑

Pentose and ED G6P 
 PGlac + NADPH glucose 6-phosphate-1- zwf FruR↓, marA↑, rob↑, SoxS↑
pathways dehydrogenase FNR↓

PGlac ⇀ PGluc 6-phosphogluconolactonase pgl
PGluc ⇀ Rl5P + NADPH + CO2 6-phosphogluconate gnd GadE↑

dehydrogenase
Rl5P 
 X5P Ribulose phosphate rpe

3-epimerase
Rl5P 
 R5P ribose-5-phosphate rpiA, rpiB

isomerase A , B
R5P + X5P 
 G3P + S7P Transketolase I, II tktA, tktB
G3P + S7P 
 F6P + E4P Transaldolase A,B talA, talB
E4P + X5P 
 F6P + G3P Transketolase I, II tktA, tktB

Mixed acid PEP + CO2 ⇀ OxA Phosphoenolpyruvate ppc Frur↓
fermentation carboxylase

Pyr ⇀ AcCoA + NADH + CO2 Pyruvate dehydrogenase aceE-F, lpd CRP↑, pdhR↓
arcA↓, FNR↓

Pyr ⇀ AcCoA + Form Pyruvate formate-lyase tdcE ARCA↑, FNR↑,
pflb CRP↑, IHF↑,

TdcA↑, Fis↓, NarL↓
Form 
 CO2 + H2 Formate hydrogen hycC, hycD, hycE, IHF↑, Fhla↑

lyase complex hycF, hycG, fdhf ModE↑, FNR↑,
NarP↑, NsrR↑, NarL↑

Pyr + NADH 
 Lac D-lactate ldhA ArcA↓
dehydrogenase

AcCoA + OxA ⇀ Cit Methyl citrate synthase prpc CRP↑, IHF↑, ARCA↓
citrate synthase gltA

Fum + QuiH2 ⇀ Succ Fumarate reductase frdC, frdB, FNR↑, Dcur↑
frdA, frdD NarL↓

AcCoA + NADH 
 Adh Acetaldehyde mhpF, adhE FNR↑, Fis↑,
dehydrogenase I,II Lrp↓, FruR↓, NarL↓

NADH + Adh 
 Eth Alcohol dehydrogenase adhE FNR↑, Fis↑,
Lrp↓, FruR↓, NarL↓

AcCoA 
 AcP Phosphateacetyl transferase pta ArcA↑, FNR↑
AcP 
 ATP + Ac Acetyl kinase ackA ArcA↑, FNR↑

TCA alKG ⇀ SuccCoA + NADH + CO2 2-oxoglutarate lpd CRP↓, Fis↑
cycle dehydrogenase sucA, B FNR↓, ArcA↓, CRP↑,

Fur↑, IHF↓
Cit 
 ICit Aconitate acnA, acnB CRP↑, FruR↓,

hydratase 1,2 ARCA↓, Fis↓
ICit 
 alKG + NADPH + CO2 Isocitrate dehydrogenase icd FruR↑, ArcA↓

Mal 
 OxA + NADH Malate dehydrogenase mdh Dpia↑, CRP↑,
ArcA↓, FlhDC↓

Fum 
 Mal Fumarase A fumA CRP↑, ArcA↓, FNR↓
Fumarase B fumB ArcA↑, CRP↑, Dcur↑,

Fur↑, FNR↑, Fis↓, NarL↓
Fumarase C fumC MarA↑, Rob↑, SoxR↑,

SoxS↑, ArcA↓
SuccCoA 
 Succ + ATP Succinyl CoA sucC, sucD ArcA↑, Fur↑, CRP↑

synthatase IHF↓, ArcA↓, FNR↓
Glyoxylate ICit ⇀ Succ + Glyox Isocitrate lyase aceA IHF↑, FruR↑

shunt ArcA↓, CRP↓, IclR↓
AcCoA + Glyox ⇀ Mal Malate aceB, glcB IHF↑, FruR↑,

synthase A, G ArcA↓, CRP↓, IclR↓

Reactions, enzymes, genes and transcriptional regulators (TR) involved in Central Metabolic Pathway of E. coli. The ↑ indicates activation and ↓
indicates repression.
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Table S2. Enzyme names and abbreviations

Abbreviation Name Enzyme Commission Code
PTS I PTS Enzymes I EC=2.7.11.-
PGI Phosphoglucose isomerase EC=5.3.1.9

PFK I, II Phosphofructokinase I,II EC=2.7.1.11
FBA I, II Fructose-biphosphate aldolase EC=4.1.2.13

TPI Triose phosphate isomerase EC=5.3.1.1
G3PH Glyceraldehyde-3-phosphate dehydrogenase EC=1.2.1.12
PGK Phosphoglycerate Kinase EC=2.7.2.3

2,3 BPGM Phosphoglyceromutase EC=5.4.2.1
ENO Enolase EC=4.2.1.11
PYK Pyruvate kinase EC=2.7.1.40

G6P1DH glucose-6-phosphate 1-dehydrogenase EC=1.1.1.49
6PDHL 6-phosphogluconate dehydrogenase EC=1.1.1.44
PGL 6-phosphogluconolactonase EC=3.1.1.31
RP3E Ribulose-phosphate-3-epimerase EC=5.1.3.1

RFPI A,B ribose-5-phosphate-isomerase A,B EC=5.3.1.6
TKT Transketolase I, II EC=2.2.1.1
TAL Transaldolase A, B EC=2.2.1.2
PPC Phosphoenolpyruvate EC=4.1.1.31
PFL Pyruvate formate lyase EC=2.3.1.54
PDH Pyruvate dehydrogenase EC=1.2.4.1
FHLC Formate hydrogenlyase complex
D-LDH D-lactate dehydrogenase EC=1.1.1.28
MCITS Citrate synthase EC=2.3.3.1
ACH-1,2 Aconitase hydratase 1,2 EC=4.2.1.3
ICITDH Isocitrate dehydrogenase EC=1.1.1.42
MDH Malate dehydrogenase EC=1.1.1.37

FUM A,B,C Fumarase A, B, C EC=4.2.1.2
FUMR Fumarase reductase EC=1.3.99.1

ACDH I,II Acetaldehyde dehydrogenase I,II EC=1.2.1.10
ADHE Alcohol dehydrogenase EC=1.1.1.1
PTA Phosphate acetyltransferase EC=2.3.1.8
ACKA Acetate kinase EC=2.7.2.1
2 OGDH 2-oxoglutarate dehydrogenase EC=1.2.4.2
SCoA Syn Succinyl CoA Synthetase EC=6.2.1.5

ICL Isocitrate lyase EC=4.1.3.1
MS A G Malate Synthase A, G EC=2.3.3.9
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Table S3. Mathematical expressions for different regulatory modes of GRN

Regulation type Equilibrium, mass-balance and f expressions

1. A monomer regulating Kd = O×I
OI

molecule Ot = O +OI
O + I 
 OI,Kd It = I +OI

f = OI
Ot

2. A dimer regulating Kd = O×I2
OI2

, K1 = I×I
I2

molecule Ot = O +OI2
I + I 
 I2,K1 It = I + 2× I2 + 2×OI2

O + I2 
 OI2,Kd f = OI2
Ot

3. Multiple operator site Kd = O×I2
OI2

, K1 = I×I
I2

binding Kd

m = OI2×I2
OI4

I + I 
 I2,K1 Ot = O +OI2 +OI4
O + I2 
 OI2,Kd It = I + 2× I2 + 2×OI2 + 4×OI4

OI2 + I2 
 OI4,
Kd

m , (m < 1) f = OI2+OI4
Ot

4. Autoregulation Kd = O×I2
I2

, K1 = I×I
I2

I + I 
 I2,K1 Ot = O + I2
O + I2 
 OI2,Kd It = I + 2× I2 + 2×OI2

I is the protein from It = fn × Imax

regulated gene itself f = OI2
Ot

Same symbols as that of species symbol, indicate its concentration. O: operator site; I: inducer
regulatory protein; symbol K with different suffices indicate different dissociation constants; m: extent
of cooperativity which indicates the degree to which binding to an operator site is enhanced when
adjacent operator site is occupied by the transcriptional regulatory protein; R: repressor regulatory
protein; a: co-response coefficient, * indicates activated protein, subscript n indicates nuclear
localization of the protein.
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