#### **S**1

## SUPPORTING INFORMATION

## The R-Diastereomer of 6'-O-Toluoyl-carba-LNA Modification in the Core Region of siRNA

## Leads to 24-times Improved RNA Silencing Potency Against the HIV-1 Compared to its S-

#### counterpart

Suman Dutta<sup>*a*</sup>, Nipa Bhaduri<sup>*a*</sup>, Ram Shankar Upadhayaya<sup>*b,c*</sup>, Neha Rastogi<sup>*a*</sup>, Sunita G. Chandel<sup>*a*</sup>, Jaya kishore Vandavasi<sup>*b*</sup>, Oleksandr Plashkevych<sup>*d*</sup>, Ramakant A. Kardile<sup>*b*</sup>, Jyoti Chattopadhyaya<sup>*d,\**</sup>

<sup>a</sup>Institute of Molecular Medicine, BIPL, Building - B, Ist Floor, Block – EP & GP, Salt Lake Electronics Complex, Sector –V, Kolkata 700 091, India.

<sup>b</sup>Institute of Molecular Medicine, International Biotech Park, Genesis Campus, Phase II Opp Infosys, Tal. Mulshi Hinjewadi, Pune- 411 057, India.

<sup>°</sup>Institute of Biomedicinal Chemistry, G-16, additional MIDC Jejuri, Tal. Purandhar, Pune 412303, India.

<sup>d</sup>Program of Chemical Biology, Institute of Cell and Molecular Biology, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden.

\*Corresponding Author: Chemical Biology Program, Institute of Cell and Molecular Biology. Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden.

Phone: +46-18-4714577, Fax: +46-18-554495, Email: jyoti@boc.uu.se

| No.       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page<br>No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure S1 | Dose response studies using p24 ELISA for [6'( <i>R</i> ), 7'( <i>S</i> ); 6'( <i>S</i> ), 7'( <i>S</i> )]-jcLNA modified siRNA (as in <b>IVa</b> or <b>IVb</b> in Fig 1) showing % inhibition of viral replication in comparison to the virus control at various doses. Left panels represent 6' <i>R</i> /7'S diastereomer <b>IVa</b> modified siRNAs <b>10-13</b> , and right panels represent 6' <i>S</i> /7'S diastereomer <b>IVb</b> modified siRNAs <b>14-17</b> respectively. Panels are marked as following: <b>a</b> : siRNA <b>10</b> ; <b>b</b> : siRNA <b>14</b> ; <b>c</b> : siRNA <b>11</b> ; <b>d</b> : siRNA <b>15</b> ; <b>e</b> : siRNA <b>12</b> ; <b>f</b> : siRNA <b>16</b> ; <b>g</b> : siRNA <b>13</b> and <b>h</b> : siRNA <b>17</b> . The siRNA sequences containing corresponding diastereomers are shown above the bar plots with the position(s) of modification highlighted. Respective dose titration sigmoidal plots are placed below each bar plot. Results are cumulative of at least three independent experiments. Error bars represent $\pm$ SD from the mean value. p24 ELISA has been carried out with culture supernatants 48 h post-co-transfection of pNL4-3 and varying doses of siRNA. The determination of IC <sub>50</sub> values using Western blot and RT-PCR are documented in SI (Figures S3 and S4). | S3-S4       |
| Figure S2 | Serum stability of chemically modified double-stranded $6'(R)$ -O-Tol-jcLNA (10-13) and $6'(S)$ -O-Tol-jcLNA (14-17) containing siRNAs targeting HIV1 TAR1 at different time points. Left panels represent $6'(R)$ , $7'(S)$ diastereomer IVa modified siRNAs 10-13, and right panels represent $6'(S)$ , $7'(S)$ diastereomer IVb modified siRNAs 14-17 respectively. Panels are marked as following: a: siRNA 10; b: siRNA 14; c: siRNA 11; d: siRNA 15; e: siRNA 12; f: siRNA 16; g: siRNA 13 and h: siRNA 17. The sequence for a particular isomeric pair is represented above the gels with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S5          |

## **Table of Contents**

|            | position(s) of modification highlighted. Respective best fit exponential decay curve of the double stranded form showing the $t_{1/2}$ value is represented below the gels. Gels and curves are representative of at least three experimental repeats. Error bars represent $\pm$ SD from the mean value.                                                                                                                                                   |             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure S3  | Dose response study obtained from Western Blot of C6'-( <i>R/S</i> )-OTol/7'S modified siRNAs                                                                                                                                                                                                                                                                                                                                                               | S6-S7       |
| Figure S4  | Dose response studies using RTPCR for C6'-(R/S)-OTol/7'S modified siRNAs                                                                                                                                                                                                                                                                                                                                                                                    | S8          |
| Figure S5  | Cell viability assay (Mtt assay) for C6'-(R/S)-OTol/7'S modified siRNAs                                                                                                                                                                                                                                                                                                                                                                                     | S9          |
| Table S1   | Atomic charges, names and types of the $C6'-(R)$ -OTol-jcLNA and $C6'-(S)$ -O-Tol-jcLNA nucleotides used as parameters of the MD simulations.                                                                                                                                                                                                                                                                                                               | S10-<br>S11 |
| Figure S6  | Overlap of molecular structure of the $C6'(R)$ -O-Tol and $C6'(S)$ -O-Tol T13 modified-<br>siRNAs duplexes ( <b>10</b> and <b>14</b> in Table 1) with the target RNA (top and side view). It is<br>clearly visible that the $C6'(S)$ -OTol is partially located hindering the entrance to the<br>minor grove of the duplex while $C6'(R)$ -OTol is pointing out. (for details of the<br>calculations see the main text). Visualized using VMD. <sup>6</sup> | S12         |
| Figure S7  | MALDI-MS spectrum for sequence 1, native                                                                                                                                                                                                                                                                                                                                                                                                                    | S13         |
| Figure S8  | MALDI-MS spectrum for sequence 2, LNA-T modification at T <sup>13</sup>                                                                                                                                                                                                                                                                                                                                                                                     | S14         |
| Figure S9  | MALDI-MS spectrum for sequence 3, LNA-T modification at T <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                      | S15         |
| Figure S10 | MALDI-MS spectrum for sequence 4, LNA-T modification at T <sup>20</sup>                                                                                                                                                                                                                                                                                                                                                                                     | S16         |
| Figure S11 | MALDI-MS spectrum for sequence 5, LNA-T modification at $T^{1}+T^{20}$                                                                                                                                                                                                                                                                                                                                                                                      | S17         |
| Figure S12 | MALDI-MS spectrum for sequence 6, 6'-achiral-jcLNA-T modification at T <sup>13</sup>                                                                                                                                                                                                                                                                                                                                                                        | S18         |
| Figure S13 | MALDI-MS spectrum for sequence 7, 6'-achiral-jcLNA-T modification at T <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                         | S19         |
| Figure S14 | MALDI-MS spectrum for sequence 8, 6'-achiral-jcLNA-T modification at T <sup>20</sup>                                                                                                                                                                                                                                                                                                                                                                        | S20         |
| Figure S15 | MALDI-MS spectrum for sequence 9, 6'-achiral-jcLNA modification at $T^1+T^{20}$                                                                                                                                                                                                                                                                                                                                                                             | S21         |
| Figure S16 | MALDI-MS spectrum for sequence 10, 6'-O-Tol-jcLNA-T modification at $T^{13}$ (6'R,7'S)                                                                                                                                                                                                                                                                                                                                                                      | S22         |
| Figure S17 | MALDI-MS spectrum for sequence 11, 6'-O-Tol-jcLNA-T modification at $T^1$ (6'R,7'S)                                                                                                                                                                                                                                                                                                                                                                         | S23         |
| Figure S18 | MALDI-MS spectrum for sequence 12, 6'-O-Tol-jcLNA-T modification at $T^{20}$<br>(6'R,7'S)                                                                                                                                                                                                                                                                                                                                                                   | S24         |
| Figure S19 | MALDI-MS spectrum for sequence 13, 6'-O-Tol-jcLNA-T modification at $T^{1}+T^{20}$<br>(6'R,7'S)                                                                                                                                                                                                                                                                                                                                                             | S25         |
| Figure S20 | MALDI-MS spectrum for sequence 14, 6'- $O$ -Tol-jcLNA-T modification at T <sup>13</sup> (6' $S$ ,7' $S$ )                                                                                                                                                                                                                                                                                                                                                   | S26         |
| Figure S21 | MALDI-MS spectrum for sequence 15, 6'- $O$ -Tol-jcLNA-T modification at T <sup>1</sup> (6'S,7'S)                                                                                                                                                                                                                                                                                                                                                            | S27         |
| Figure S22 | MALDI-MS spectrum for sequence 16, 6'-O-Tol-jcLNA-T modification at T <sup>20</sup> (6'S,7'S)                                                                                                                                                                                                                                                                                                                                                               | S28         |
| Figure S23 | MALDI-MS spectrum for sequence 17, 6'-O-Tol-jcLNA-T modification at $T^1+T^{20}$ (6'S,7'S)                                                                                                                                                                                                                                                                                                                                                                  | S29         |





**Figure S1.** Dose response studies using p24 ELISA for [6'(*R*), 7'(*S*); 6'(*S*), 7'(*S*)]-jcLNA modified siRNA (as in **IVa** or **IVb** in Fig 1) showing % inhibition of viral replication in comparison to the virus control at various doses. Left panels represent 6'R/7'S diastereomer **IVa** modified siRNAs **10-13**, and right panels represent 6'S/7'S diastereomer **IVb** modified siRNAs **14-17** respectively. Panels are marked as following: **a**: siRNA **10**; **b**: siRNA **14**; **c**: siRNA **15**; **e**: siRNA **12**; **f**: siRNA **16**; **g**: siRNA **13** and **h**: siRNA **17**. The siRNA sequences containing corresponding diastereomers are shown above the bar plots with the position(s) of modification highlighted. Respective dose titration sigmoidal plots are placed below each bar plot. Results are cumulative of at least three independent experiments. Error bars represent  $\pm$  SD from the mean value. p24 ELISA has been carried out with culture supernatants 48 h post-co-transfection of pNL4-3 and varying doses of siRNA. The determination of IC<sub>50</sub> values using Western blot and RT-PCR.



**Figure S2**. Serum stability of chemically modified double-stranded 6'(R)-O-Tol-jcLNA (10-13) and 6'(S)-O-Tol-jcLNA (14-17) containing siRNAs targeting HIV1 TAR1 at different time points. Left panels represent 6'(R), 7'(S) diastereomer IVa modified siRNAs 10-13, and right panels represent 6'(S), 7'(S) diastereomer IVb modified siRNAs 14-17 respectively. Panels are marked as following: a: siRNA 10; b: siRNA 14; c: siRNA 11; d: siRNA 15; e: siRNA 12; f: siRNA 16; g: siRNA 13 and h: siRNA 17. The sequence for a particular isomeric pair is represented above the gels with the position(s) of modification highlighted. Respective best fit exponential decay curve of the double stranded form showing the  $t_{1/2}$  value is represented below the gels. Gels and curves are representative of at least three experimental repeats. Error bars represent  $\pm$  SD from the mean value.



Figure S3



Figure S3: Dose response studies using Western blot for [C6'-(*R/S*)-O-Tol/7'S]-jcLNA modified siRNAs targeting HIV-1 TAR region. Left panels represent C6'-(*R*)-O-Tol isomer and the right panels represent C6'-(*S*)-O-Tol isomer. a: siRNA 10, b: siRNA 14, c: siRNA 11, d: siRNA 15, e: siRNA 12, f: siRNA 16, g: siRNA 13, h: siRNA 17. The sequence for a particular isomer pair is represented above the blot with the position(s) of modification highlighted. Concentrations in nM are indicated above the gels. Results are cumulative of at least three independent experiments. Error bars represent ±SD from mean. Western blot was performed with 40 ug of total protein isolated from cells 48 h post co-transfection of pNL4-3 and varying doses of siRNA. The blots were probed with HIV-1  $\alpha$ -p24 and  $\alpha$ -Actin antibodies. Band intensities of p55<sup>Gag</sup> were calculated and normalized with that of actin intensity for each sample using ImageJ software. % inhibition was calculated from the normalized intensity over virus control (VC).



Figure S4: Dose response studies using RTPCR for [C6'-(R/S)-OTol/7'S]-jcLNA modified siRNAs targeting HIV-1 TAR region. Left panels represent C6'-(R/S)-O-Tol isomer and the right panels represent C6'-(S)-O-Tol isomer a: siRNA 10, b: siRNA 14, c: siRNA 11, d: siRNA 15, e: siRNA 12, f: siRNA 16, g: siRNA 13, h: siRNA 17. The sequence for a particular C6'-achiral-jcLNA/LNA pair is represented above the gels with the position(s) of modification highlighted. Concentrations in nM are indicated above the gels. Gels are representative of at least two independent experiments. RTPCR was performed with 1  $\mu$ g of RNA isolated from cells 48 h post co-transfection of pNL4-3 and varying doses of siRNA. The PCR was performed with HIV-1 Gag and TAR along with human actin specific primers.



**Figure S5. Cell viability assay (MTT assay)** for **[C6'-(***R/S***)-***O***-<b>Tol/7'S]-jcLNA** modified siRNAs. 48 h post transfection  $10^4$  cells were subjected to MTT assay in a 96 well plate. Cells having the highest dose of each siRNA (100 nM) were used. Error bars represent ±SD from the mean values. Viability was measured over that of mock transfected cells. Results are cumulative of at least three independent experiments.

**Table S1.** Atomic charges, names and types of the C6'-(R)-O-Tol-jcLNA and C6'-(S)-O-Tol-jcLNA nucleotides used as parameters of the MM minimization. The charges have been obtained from the 6-31G\*\* *ab initio* geometry optimizations performed using GAUSSIAN 03<sup>5</sup> and converted employing two-stage Resp fitting as implemented in the Antechamber set of auxiliary programs of Amber10<sup>1</sup>.

| <i>C6'-(R)-O</i> -To-jcLNA |           |           | C6'-(S)-O-To-jcLNA |           |           |  |
|----------------------------|-----------|-----------|--------------------|-----------|-----------|--|
| Atom name                  | Atom type | Atom name | Atom type          | Atom name | Atom type |  |
| "P"                        | Р         | 1.1659    | "P"                | Р         | 1.1659    |  |
| "O1P"                      | 02        | -0.7761   | O1P                | 02        | -0.7761   |  |
| "O2P"                      | 02        | -0.7761   | O2P                | 02        | -0.7761   |  |
| "O5*"                      | OS        | -0.3895   | O5'                | OS        | -0.3895   |  |
| "C5*"                      | СТ        | 0.0222    | C5'                | СТ        | 0.0431    |  |
| "H5*1"                     | H1        | 0.2304    | H5'1               | H1        | 0.1783    |  |
| "H5*2"                     | H1        | 0.1437    | H5'2               | H1        | 0.1584    |  |
| "C4*"                      | СТ        | 0.1923    | C4'                | СТ        | 0.2149    |  |
| "CH4"                      | СТ        | 0.2248    | CH4                | СТ        | 0.2043    |  |
| "H66"                      | H1        | 0.1935    | Н66                | H1        | 0.2109    |  |
| "O4*"                      | OS        | -0.6977   | O4'                | OS        | -0.6934   |  |
| "C1*"                      | СТ        | 0.4373    | C1'                | СТ        | 0.4371    |  |
| "H1*"                      | H2        | 0.2109    | H1'                | H2        | 0.2448    |  |
| "N1"                       | N*        | -0.8283   | N1                 | N*        | -0.8276   |  |
| "C6"                       | СМ        | 0.1288    | C6                 | СМ        | 0.1321    |  |
| "H6"                       | H4        | 0.3442    | Н6                 | H4        | 0.3341    |  |
| "C5"                       | СМ        | -0.2188   | C5                 | СМ        | -0.2177   |  |
| "C5M"                      | СТ        | -0.5066   | C5M                | СТ        | -0.5010   |  |
| "H5M1"                     | НС        | 0.1710    | H5M1               | НС        | 0.1737    |  |
| "H5M2"                     | НС        | 0.1497    | H5M2               | НС        | 0.1528    |  |
| "H5M3"                     | НС        | 0.2620    | H5M3               | НС        | 0.2468    |  |
| "C4"                       | С         | 0.8260    | C4                 | С         | 0.8268    |  |
| "O4"                       | 0         | -0.6191   | 04                 | 0         | 0.6209    |  |
| "N3"                       | NA        | -0.9377   | N3                 | NA        | -0.9383   |  |
| "H3"                       | Н         | 0.4065    | Н3                 | Н         | 0.4064    |  |
| "C2"                       | С         | 1.0767    | C2                 | С         | 1.0764    |  |
| "O2"                       | 0         | -0.6574   | 02                 | 0         | 0.6515    |  |
| "C3*"                      | СТ        | 0.1928    | C3'                | СТ        | 0.1516    |  |
| "H3*"                      | H1        | 0.2089    | H3'                | H1        | 0.2147    |  |
| "C2*"                      | СТ        | -0.2501   | C2'                | СТ        | -0.2454   |  |
| "H2*1"                     | НС        | 0.2101    | H2'1               | НС        | 0.2075    |  |
| "С2Н"                      | СТ        | -0.2069   | С2Н                | СТ        | -0.2077   |  |
| "H7"                       | НС        | 0.2216    | H7                 | НС        | 0.2100    |  |
| "O3*"                      | OS        | -0.7242   | O3'                | OS        | -0.7354   |  |
| "C8M"                      | СТ        | -0.4743   | C8M                | СТ        | -0.4823   |  |
| "H8M1"                     | НС        | 0.1574    | H8M1               | НС        | 0.2111    |  |
| "H8M2"                     | HC        | 0.1690    | H8M2               | НС        | 0.1547    |  |
| "H8M3"                     | HC        | 0.1557    | H8M3               | НС        | 0.1459    |  |
| "O6R"                      | OS        | -0.7074   | O6S                | OS        | -0.7078   |  |
| "C6O"                      | С         | 0.8597    | C60                | С         | 0.8917    |  |
| "O6O"                      | 0         | -0.5499   | O60                | 0         | -0.5891   |  |
| "C1"                       | CA        | -0.1637   | C1                 | CA        | -0.1639   |  |

| "C21"  | CA | -0.1692 | C21  | CA | -0.1675 |
|--------|----|---------|------|----|---------|
| "HC21" | HA | 0.2550  | HC21 | НА | 0.2447  |
| "C31"  | CA | -0.2357 | C31  | CA | -0.2369 |
| "HC31" | НА | 0.1936  | HC31 | НА | 0.1919  |
| "C32"  | CA | -0.2450 | C32  | CA | -0.2429 |
| "HC32" | НА | 0.1897  | HC32 | НА | 0.1938  |
| "C9"   | CA | -0.1700 | C22  | CA | -0.1668 |
| "HC22" | HA | 0.2332  | HC22 | HA | 0.2396  |
| "C7"   | CA | 0.0580  | C7   | CA | 0.0581  |
| "CBM"  | СТ | -0.5085 | CBM  | СТ | -0.5079 |
| "HBM1" | НС | 0.1757  | HBM1 | НС | 0.1715  |
| "HBM2" | НС | 0.1762  | HBM2 | НС | 0.1807  |
| "HBM3" | НС | 0.1697  | HBM3 | НС | 0.1714  |



**Figure S6**. Overlap of molecular structure of the C6'-(R)-*O*-Tol and C6'-(S)-*O*-Tol-jcLNA T13 modified-siRNAs duplexes (**10** and **14** in Table 1) with the target RNA (top and side view). It is clearly visible that the C6'-(S)-*O*-Tol is partially located hindering the entrance to the minor grove of the duplex while C6'-(R)-*O*-Tol is pointing out (for details of the calculations see the main text). Visualized using VMD.<sup>6</sup>

## References

- 1. Case, D. A., et al., AMBER 7. University of California: San Francisco, 2002.
- Pérez, A.; Marchán, I.; Svozil, D.; Sponer, J.; Cheatham Iii, T. E.; Laughton, C. A.; Orozco, M. *Biophysical Journal* 2007, 92 (11), 3817-3829.
- 3. Cheatham, T. E., III; Kollman, P. A. J. Am. Chem. Soc. 1997, 119, 4805-4825.
- 4. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. **1983**, 79, 926-935.
- 5. Frisch, M. J., et al., Gaussian 98 (Revision A.6). Gaussian, Inc: Pittsburgh PA, 1998.
- 6. Humphrey, W.; Dalke, A.; Schulten, K. Journal of Molecular Graphics 1996, 14, 33-38.



Figure S7. MALDI-MS spectrum for sequence 1, native



Figure S8: MALDI-MS spectrum for sequence 2, LNA-T modification at T<sup>13</sup>

# Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is © The Royal Society of Chemistry 2011



Figure S9: MALDI-MS spectrum for sequence 3, LNA-T modification at T<sup>1</sup>



Figure S10: MALDI-MS spectrum for sequence 4, LNA-T modification at T<sup>20</sup>



Figure S11: MALDI-MS spectrum for sequence 5, LNA-T modification at  $T^1+T^{20}$ 



Figure S12: MALDI-MS spectrum for sequence 6, jcLNA-T modification at T<sup>13</sup>



Figure S13: MALDI-MS spectrum for sequence 7, jcLNA-T modification at T<sup>1</sup>



Figure S14: MALDI-MS spectrum for sequence 8, jcLNA-T modification at T<sup>20</sup>



Figure S15: MALDI-MS spectrum for sequence 9, jcLNA modification at T<sup>1</sup>+T<sup>20</sup>



Figure S16: MALDI-MS spectrum for sequence 10, 6'(*R*) -*O*-Tol-jcLNA-T modification at T<sup>13</sup>(6'*R*, 7'S)



Figure S17: MALDI-MS spectrum for sequence 11, 6'(*R*)-*O*-Tol-jcLNA-T modification at T<sup>1</sup>(6'*R*,7'S)



Figure S18: MALDI-MS spectrum for sequence 12, 6'(*R*)-*O*-Tol-jcLNA-T modification at T<sup>20</sup>(6'*R*, 7'S)



Figure S19: MALDI-MS spectrum for sequence 13, 6' (*R*) -*O*-Tol-jcLNA-T modification at T<sup>1</sup>+T<sup>20</sup>(6'*R*,7'S)



Figure S20: MALDI-MS spectrum for sequence 14, 6'(S)-O-Tol-jcLNA-T modification at T<sup>13</sup>(6'S,7'S)



Figure S21: MALDI-MS spectrum for sequence 15, 6'(S)-O-Tol-jcLNA-T modification at T<sup>1</sup>(6'S,7'S)



D:\Data\Ake\110607\_Qing and Jyoti\_antisense\jcLNA16\_desalt\0\_D9\1

Figure S22: MALDI-MS spectrum for sequence 16, 6'(*R*)-*O*-Tol-jcLNA-T modification at T<sup>20</sup>(6'S,7'S)



Figure S23: MALDI-MS spectrum for sequence 17, 6'(S)-O-Tol-jcLNA-T modification at T<sup>1</sup>+T<sup>20</sup>(6'S,7'S)