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Prolegomenon 
A graph G consists of a finite set V(G) of points (or vertices) 
together with a finite set E(G) of lines (or edges), which are 
unordered pairs of distinct points of V(G).  When the lines of a 
graph are arcs (or directed lines), which are ordered pairs of 
distinct points, it is a directed graph or digraph.  The null graph 
G0 has the null set φ for V(G) and E(G).  A line x = uv = vu in G 
joins points u and v, which are adjacent points.  Point u and line 
x are incident to each other.  The degree d of a point is the 
number of lines incident to it.  Two lines that share a point are 
adjacent lines, e.g., uv and vw. In a multigraph more than one 
line, i.e., a multiple line, joins at least one pair of points.  A loop 
x = uu is a line that joins a point to itself.  A pseudograph allows 
both multiple lines and loops.  The union G1 ∪ G2 of graphs G1 
and G2 has V = V1 ∪ V2 and E = E1 ∪ E2.  Disjoint graphs G1 
and G2 have no points (and hence no lines) in common, i.e., V1 ∩ 
V2 = φ and E1 ∩ E2 = φ. 
   A path Pn is a sequence of points p1, p2, p3, …, pn that are 
joined by lines l1l2, l2l3, …, ln – 1ln.  In a proper (or self-avoiding) 
path each point is distinct.  (Hence each line is also distinct.)  
Line-disjoint paths can share points, but not lines.  In a 
connected graph (or 1-component graph) all pairs of points are 
the endpoints of some path.  The length of the longest proper 
path is the diameter D of the graph.  A cycle (or ring) Cn is a 
sequence of points p1, p2, p3, …, pn such that the first one p1 and 
last one pn are joined by line p1pn, and all n points are distinct.  A 
tree is a connected graph without cycles (including loops and 
multiple lines). 
   The n points in a labeled graph are distinguished from each 
other by unique labels λ1, λ2, …, λn.  Alternatively, more than 
one point can have the same label.  To avoid confusion these 
non-unique labels are called colors, and to assign them is to 
color the points.  A coloring of a graph assigns colors to its 
points in such a way that no two adjacent points have the same 
color.  A point-labeled graph has at least one labeled (e.g., 
colored) point that is different from the rest, and analogously for 
line-labeled graph.  A bipartite graph or bigraph is a graph that 
has a 2-coloring, i.e., every line joins a point of the first color to 
a point of the second.  All trees are bigraphs, including star 
graphs (or simply stars) K1,n – 1 on n points, where one point of 
the first color is joined to n – 1 points of the second. 
   Two graphs G and H are isomorphic, G ≅ H, if and only if 
there exists a one-to-one correspondence between their point sets 
that preserves adjacency.  Thus, it does not matter when a graph 
is relabeled, redrawn or manipulated in any way that leaves the 
adjacency relation intact; the result is the same graph.  An 
invariant of graph G is a number I(G) associated with G that has 
the same value for any graph H isomorphic to G; thus, I(G) = 
I(H) whenever G ≅ H.  Examples of invariants are the number of 
points n, the number of lines e and the number of pairs of 
adjacent lines (connections) η.  A topological index is a real 
number that is a graph invariant or is derived from one or more 
invariants. 
   Two graphs X and Y are homeomorphic if and only if they can 
be derived from a third graph Z by the subdivision of lines.  A 
line x = uv is subdivided by replacing it with two lines uw and 
wv that are adjacent at a new point w, which has d = 2.  An 

equivalent definition is based on excision of a point w of degree 
2 and replacement of lines uw and wv with a single line uv.  A 
graph is planar if and only if it has no subgraph homeomorphic 
to K5 or K3,3. 
   A subgraph Si(G) of graph G is a graph that has all its points in 
V(G) and lines in E(G).  Based on this definition, we include G 
itself in the set of all possible subgraphs.  A spanning subgraph 
of G is a subgraph containing all the points of G.  A spanning 
subgraph that is also a tree is a spanning tree.  For any subset S 
of V(G), the subgraph of G induced by S (or induced subgraph 
〈S〉) is the maximal subgraph of G with point set S, i.e., two 
points are adjacent in 〈S〉 if and only if they are adjacent in G.  If 
G1 is a subgraph of G2, then G2 is a supergraph of G1.  A c-
component graph comprises c disjoint, connected subgraphs. 
   In a complete graph Kn on n points, each point is joined to 
every other one, i.e., all pairs of points are adjacent.  A clique in 
G is a complete subgraph of G.  Examples of common cliques in 
molecular graphs are K1 (methane), K2 (ethane), K3 ≅ C3 
(cyclopropane) and K4 (tetrahedrane).  A complete bipartite 
graph or complete bigraph Km,n contains m points of one color, n 
points of a second and all possible mn lines.  A biclique in G is a 
complete bipartite subgraph of G.  Examples of common 
bicliques in molecular graphs include K2,2 ≅ C4 (cyclobutane) 
and the star graphs K1,2, K1,3 and K1,4, which represent 
methylene, methine and quaternary carbon atoms, respectively. 
   A homologous series {H} is a recursively generated sequence 
of connected graphs G1, G2, G3, …, where Gi + 1 is obtained by 
incrementing Gi according to a recurrent rule, which is a set of 
instructions that is repeated at each stage.  Chemically relevant 
examples of homologous series are paths {Pn}, cycles {Cn}, star 
graphs {K1,n – 1} and complete graphs {Kn}. 
   Molecules are isomers whenever they have the same number 
and kinds of atoms (i.e., the same molecular formula) and the 
same number of bonds.  By analogy, two point-colored graphs 
are isomers (or isomeric graphs) whenever they have the same 
number of points of each color and the same number of edges. 
   The line graph L(G) of a graph G has the lines of G as its 
points, and two points in L(G) are adjacent whenever the 
corresponding lines in G are adjacent.  Thus, a pair of adjacent 
lines in G, called a connection, becomes a line in L(G).  When 
counting adjacent lines in pseudographs, a loop is not adjacent to 
itself and a double line has one adjacency.  Repeating the 
process leads to the iterated line graphs Li(G) (i = 0, 1, 2, …), 
where L0(G) ≅ G and L1(G) ≅ L(G).  For completeness, L(C1) ≅ 
P1, L(P1) ≅ P0 ≅ G0 and L(G0) is not defined.  The iterated line 
graph sequence is the series of integers Ni, which are the 
numbers of lines in the iterated line graphs. 
   An edge cover ℭ of graph G is any family ℭ = {S1, …, Sn} of 
subgraphs Si(G) such that every edge of G is contained in E(Si) 
for some i.  In an edge clique cover every subgraph Si ∈ ℭ is a 
clique in G; in an edge biclique cover every Si ∈ ℭ is a biclique 
in G.  A minimal edge cover does not properly contain any other 
edge cover.  Thus, in a minimal edge cover each Si ∈ ℭ is 
essential, i.e., Si contains at least one edge of G that is not in any 
other subgraph Sj ∈ ℭ (i ≠ j).  A partition P is an edge cover 
with the additional property that each edge belongs to exactly 
one Si ∈ ℭ.  Thus, in a partition no two subgraphs Si and Sj (i ≠ j) 
have an edge in common. 
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Table 13 Selected index values for all possible disconnections of azacyclohexane (28).a 

disconnection (28 ⇒) NT(lpe) –∆NT(lpe) NS(lpe) –∆NS(lpe) C(η,ε) –∆C(η,ε) 

28 59   0 31   0 30.92   0.0 
       

one-bond       
29 27 32 17 14 19.90 11.0 
30 31 28 22   9 19.90 11.0 
31 33 26 21 10 19.90 11.0 

       
two-bond       

32 17 42   7 24   7.51 23.4 
33 21 38 14 17 13.12 17.8 
34 24 35 17 14 13.12 17.8 
35 25 34 14 17 11.12 19.8 

       
36 15 44   8 23   4.00 26.9 
37 17 42 11 20   7.24 23.7 
38 19 40 12 19   7.24 23.7 

       
39 15 44   9 22   2.75 28.2 
40 16 43   9 22   2.75 28.2 

       
three-bond       

41 13 46   6 25   2.00 28.9 
42 16 43 11 20   7.24 23.7 
43 18 41 12 19   7.24 23.7 

       
44 11 48   5 26   0.00 30.9 

45, 46 b 12 47   7 24   2.00 28.9 
47, 48 b 13 46   8 23   2.75 28.2 

49 14 45   8 23   2.75 28.2 
       

50 11 48   6 25   2.00 28.9 
       

four-bond       
51   9 50   4 27   0.00 30.9 
52 10 49   6 25   2.00 28.9 

       
53   9 50   4 27   0.00 30.9 

54, 55 b 10 49   6 25   2.00 28.9 
       

five-bond       
56, 57 b   8 51   4 27   0.00 30.9 

58   9 50   5 26   2.00 28.9 
       

six-bond       
59   7 52   3 28   0.00 30.9 

a For structures see Figure I, next page.  b Pairs of isomorphic disconnections. 
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Figure I All possible disconnections of azacyclohexane (28). 


