Cavitands as superior sorbents for BTX detection at trace level

Federica Bianchi,[†] Roberta Pinalli,[‡] Franco Ugozzoli,[†] Silvia Spera,[§] Maria Careri,[†]* and Enrico Dalcanale[‡]*

[†]Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Parco Area delle Scienze 17/A, I-43100 Parma, Italy
[‡]Dipartimento di Chimica Organica e Industriale and INSTM, UdR Parma, Università degli Studi di Parma, Parco Area delle Scienze 17/A, I-43100 Parma, Italy
[§]Dipartimento di Chimica Analitica, Istituto G. Donegani, Via Fauser 4, I-28100 Novara, Italy

Cavitand 2. Bromochloromethane (16.95 g, 131 mmol) and K₂CO₃ (3.62 g, 26.20 mmol) were added, under argon, to a solution of resorcinarene **1** (2.73 g, 2.62 mmol) in dry DMA (100 mL) in a Schlenk reactor. The suspension was stirred at 88°C for 3 hours. The reaction was quenched in acid water, and the product was extracted with CH₂Cl₂ and dried on Mg₂SO₄. After filtration the solvent was removed under pressure, and the yellow oil obtained **2** in 97% yield (2.77 g) was used without any other purification. M.p. 106-108°C; ¹H NMR (300 MHz, CDCl₃): δ = 7.10 (s, 4H; Ar*H*), 6.47 (s, 4H; Ar*H*), 5.85-5.76 (m, 4H, RC*H*=CH₂), 5.72 (d, J=7.2 Hz; 4H; C*H*_{2out}), 4.93 (m, 8H, RC=C*H*₂), 4.72 (t, J=8.0 Hz, 4H; RC*H*Ar₂), 4.41 (d, J=7.2 Hz, 4H; C*H*_{2in}), 2.20 (m, 8H; RC*H*₂CHAr₂), 2.03 (m, 8H; RC*H*₂CH=CH₂), 1.29 (m, 48H; C*H*₂); ¹³C NMR (300 MHz, CDCl₃): δ = 154.8 (*C*, resorcinarene), 139.2 (*CH*=CH₂), 138.4 (*C*, resorcinarene), 120.6 (*C*, resorcinarene), 116.5 (*C*, resorcinarene), 114.2 (CH=*CH*₂) 99.5 (OC*H*₂O), 36.3 (*CH*Ar₂), 33.8-27.8 (*CH*₂, chain); FT-IR (KBr): 1641, 968 (OCH₂O), 908 (C=C) cm⁻¹; MS (CI): *m/z* (%): 1090 (90) [MH]⁺. Anal. Calcd for C₇₂H₉₆O₈: C, 79.37; H, 8.88. Found: C, 79.01; H, 9.07.

Cavitand 3. 2,3-dichloroquinoxaline (1.10 g, 7.97 mmol) and K₂CO₃ (6.37 g, 46.09 mmol) were added, under argon, to a solution of resorcinarene **1** (2.0 g, 1.92 mmol) in dry DMA (40 mL). The suspension was stirred at 40°-50°C for about 16 hours. The reaction was quenched in water (200 mL); the resulting suspension was acidified to pH 7 and filtered. The residue was dissolved in CH₂Cl₂ and the organic layer was washed with water to neutrality and evaporated under vacuum. The residue was then purified by column chromatography (SiO₂, CH₂Cl₂/Et₂O 99:1) to give cavitand **3** in 44% yield (1.32 g) as a white powder. M.p. 275-276°C; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.16$ (s, 4H; Ar*H*), 7.79 (m, 8H; Ar*H*, part AA' of a AA'BB' system), 7.47 (m, 8H; Ar*H*, part BB' of a AA'BB' system), 7.21 (s, 4H; Ar*H*), 5.84 (m, 4H; RCH=CH₂), 5.58 (t, J=7.3 Hz, 4H; RCHAr₂), 4.98 (m, 8H; RCH=CH₂), 2.23 (m, 8H; RCH₂CHAr₂), 2.05 (m, 8H; RCH₂CH=CH₂), 1.35 (m, 48H; CH₂); FT-IR (KBr): 3072, 1640, 911 (C=C) cm⁻¹; MS (CI): *m/z* (%): 1546 (100) [MH]⁺. Anal. Calcd for C₁₀₀H₁₀₄N₈O₈: C, 77.69; H, 6.78; N, 7.25. Found: C, 77.41; H, 6.97; N, 7.01.

²⁹Si CP/MAS NMR spectra of: (a) MeCav coated silica; (b) QxCav coated silica

¹³C CP/MAS NMR spectra of: (a) MeCav grafted on silica; (b) QxCav grafted on silica

Desorption pattern of BTX observed for Tenax TA[®] at 50°C.

Gas chromatographic traces obtained from the desorption at 75°C of the BTX mixture trapped on: A) QxCav trap and B) Carbotrap $100^{\text{®}}$.