A Solid-State Structural and Theoretical Study on the 1:1 Addition Compounds of Thioethers with Dihalogens and Interhalogens I-X (X = I, Br, Cl)

Gabriel A. Asseily, Robert P. Davies*, Henry S. Rzepa*, Andrew J.P. White

Dept of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.


The first solid-state structural characterisation of a thioether I-Cl adduct is presented along with new much improved theoretical calculations for the accurate modelling of thioether interhalogen adducts.


Electronic Supplemental Information

3D Coordinates in the form of MDL Molfiles and CML files, for all geometries and associated energies (Hartree). Calculations performed using Gaussian 98 using General basis sets1 including the the MIDI! basis set2 and pVTZ basis set3. Note: The G03 program uses an SVD algorithm to retain as many functions a possible when doing the test for linear dependence in basis sets. This results in retention of more basis functions then G98, and hence slightly lower energies. Retention of all basis functions can be forced using the keyword IOP(3/32=2). The KMLYP method4, CCSD method5 and CPCM (polarizable conductor calculation model)6 were used.


Table 1. Energies and Geometries for X=F,Cl,Br,I.
X Energy (Hartree), Method/basis set S...I distance, Å (experimental values) I-X distance, Å (experimental values)
F -7497.44379, B3LYP/6-311G(d,p) 2.857 2.029
F -7498.36888, B3LYP/pVTZ 2.796 2.014
F -7495.00211, KMLYP/6-311G(d,p) 2.754 1.973
F -7495.95301, KMLYP/pVTZa 2.713 1.948
F -7495.95573, KMLYP(CPCM)/pVTZ 2.592 2.019
Cl -7857.83074, B3LYP/6-311G(d,p) 2.908 (2.575, 2.556) 2.491 (2.558, 2.604)
Cl -7855.16216, KMLYP/6-311G(d,p) 2.827 2.410
Cl -7853.94815, CCSD/6-311G(d,p) 3.047 2.428
Cl -7823.80997, B3LYP/MIDI! 2.836 2.453
Cl -7821.18482, KMLYP/MIDI! 2.778 2.377
Cl -7819.68286, CCSD/MIDI! 2.971 2.388
Cl -7821.18715, KMLYP(CPCM)/MIDI! 2.608 2.472
Cl -7858.74220, B3LYP/pVTZ 2.881 2.470
Cl -7856.10083, KMLYP/pVTZb 2.805 2.394
Cl -7856.10101, KMLYP(CPCM)/pVTZ 2.623 2.493
Clc -8775.69715, KMLYP/pVTZ 2.860 2.359, 2.466
Cld -15712.2081, KMLYP/pVTZ 2.805 2.397, 3.715
Br -9972.67817, B3LYP/pVTZ 2.924 (2.615, 2.620, 2.679, 2.617, 2.687) 2.617 (2.690, 2.694, 2.654, 2.705, 2.645)
Br -9971.76233, B3LYP/6-311G(d,p) 2.973 2.624
Br -9968.44731, KMLYP/6-311G(d,p) 2.894 2.538
Br -9969.38767, KMLYP/pVTZe 2.849 2.535
Br -9969.38702, KMLYP(CPCM)/pVTZ 2.648 2.634
I -14317.15297, B3LYP/6-311G(d,p) 3.059 (2.886, 2.812) 2.824 (2.781, 2.803)
I -14318.98171, B3LYP/pVTZ 3.025 2.807
I -14313.16245, KMLYP/6-311G(d,p) 2.996 2.729
I -14315.03279, KMLYP/pVTZf 2.962 2.715
I -14315.03695, KMLYP(CPCM)/pVTZ 2.726 2.804

a ΔG298dissociation 8.8 kcal/mol. b ΔG298dissociation 3.9 kcal/mol. c For ICl3 system. d Dimer. e ΔG298dissociation 2.7 kcal/mol. f ΔG298dissociation 0.2 kcal/mol.

Table 2. NBO Analysis (KMLYP/pVTZ)
Natural property F Cl Br I
Charge on X -0.66 -0.41 -0.30 -0.15
Charge on I +0.43 +0.18 +0.10 -0.02
Slp to I-X σ* Interaction energy 63.5 50.5 45.7 30.8
Slp occupancy 1.71 1.73 1.74 1.78
X-Iσ* occupancy 0.24 0.22 0.21 0.17
Table 3. Normal coordinate analysis for X=Cl,Br (KMLYP//pVTZ).
Cl-I stretch 346 Enable Java S-I stretch 125 Enable Java
Enable Java Enable Java
Br-I stretch 242 Enable Java S-I stretch 113 Enable Java
Enable Java Enable Java
Table 4. Crystallographic Coordinates and Data for Molecule 1 in CML Format
INChI: 1.12Beta/C14H15ClIS/c15-16-17(11-13-7-3-1-4-8-13)12-14-9-5-2-6-10-14/h1-10H,11-12H2,16H

Computational Details

Ab initio calculations were performed using the Gaussian 98 and Gaussian 03 programs.7 The KMLYP procedure4 was invoked using the keywords iop(3/76=1000005570) iop(3/77=0000004430) and iop(3/78=0448010000) (Gaussian 03). Full geometry optmisation was followed by zero point and entropy energy correction using unscaled calculated frequencies. NBO analysis followed Weihold's protocols.8

References

  1. http://www.emsl.pnl.gov/forms/basisform.html
  2. R. E. Easton, D. J. Giesen, A. Welch, C. J. Cramer, and D. G. Truhlar, Theor. Chim. Acta, 1996, 93, 281.
  3. A. J. Sadlej, Collec. Czech. Chem. Commun. 53, 1995 (1988) A. J. Sadlej and M. Urban, J. Mol. Struct. (THEOCHEM) 234, 147 (1991) A. J. Sadlej, Theor. Chim. Acta 79, 123 (1992) A. J. Sadlej, Theor. Chim. Acta 81, 45 (1992) A. J. Sadlej, Theor. Chim. Acta 81, 339 (1992).
  4. J. K. Kang and C. B. Musgrave, J. Chem. Phys., 2001, 115, 11040; J. P. Senosiain, J. H. Han, Joseph, C. B. Musgrave, D. M. Golden, Faraday Discussions, 2001, 119, 173-189.
  5. G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
  6. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.
  7. (a) Gaussian 98 (Revision A.11): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian, Inc., Pittsburgh (PA), 1998; (b) Gaussian 03 (Revision B.04): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, E.; Robb, M. A.; Cheeseman, J. R.; Montgomery (Jr.), J. R.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh (PA), 2003.
  8. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211-7218; A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 1988, 88, 899-926.