Computational Study on reactivity of cyclic organometallic dienes containining silicon, germanium and tin

Davor Margetić and Mirjana Eckert-Maksić

Laboratory for Physical Organic Chemistry, Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, Zagreb.

Croatia

		R			R M-R R R
		R=H			R=H
	Μ				
1	С	-194.07159	9	С	-233.38217
2	Si	-159.84304	10	Si	-164.93178
3	Ge	-159.72211	11	SiGe	-164.81509
4	Sn	-159.31171	12	Ge	-164.69876
		$R=CH_3$			$R=CH_3$
5	С	-272.68522	13	С	-390.60631
6	Si	-238.49574	14	Si	-322.22849
7	Ge	-238.37146	15	SiGe	-322.10858
8	Sn	-237.96086	16	Ge	-321.98912
		-307 318396			

Table S1. Total energies of reactants obtained by B3LYP/LANL2DZ (a.u.)

		MR ₂ O	MR ₂			LR2 O	MR2 LR2
		R=H				R=H	
TS	Μ	exo,exo-	exo,endo-	TS	M, L	exo,exo-	exo,endo-
1	С	-501.357423	-501.358543	9	С	-540.660915	-540.664334
2	Si	-467.123108	-467.128282	10	Si	-472.210795	-472.212928
3	Ge	-467.001281	-467.007756	11	Si Ge	-472.094589	-472.097039
4	Sn	-466.593379	-466.596111	12	Ge	-471.977300	-471.979142
		$R=CH_3$				$R=CH_3$	
5	С	-579.948321	-579.963009	13	С	-697.862793	-697.872781
6	Si	-545.767487	-545.778962	14	Si	-629.502953	-629.507157
7	Ge	-545.645691	-545.654342	15	Si Ge	-629.383999	-629.387827
8	Sn	-545.238981	-545.243176	16	Ge	-629.266276	-629.268057

Table S2. Total energies of transition state structures obtained by B3LYP/LANL2DZ (a.u.)

 Table S3. B3LYP/LANL2DZ total energies of products (in a.u.)

		Product	Product				Product	Product	
		Exo,exo-	Exo,endo-				Exo,exo-	Exo,end-o	
TS	Μ	R=H		ΔΔΕ	TS	M, L			ΔΔΕ
1	С	-501.43989	-501.43377	16.1	9	С	-540.76359	-540.76069	7.4
2	Si	-467.21245	-467.20798	11.8	10	Si	-472.31716	-472.31409	8.1
3	Ge	-467.09545	-467.09039	13.3	11	Si Ge	-472.20251	-472.199286	8.5
4	Sn	-466.69184	-466.68199	25.9	12	Ge	-472.08799	-472.08494	8.0
		$R=CH_3$							
5	С	-580.04993	-580.04232	32.5	13	С	-697.97353	-697.97224	22.9
6	Si	-545.85841	-545.85653	2.9	14	Si	-629.60994	-629.60842	4.0
7	Ge	-545.73936	-545.73843	2.4	15	Si Ge	-629.49237	-629.49034	5.3
8	Sn	-545.33764	-545.33019	19.6	16	Ge	-629.37539	-629.37276	6.9

		R		R M-R R R	
		R=H			R=H
	Μ				
1	С	-194.12427	9	С	-233.445586
2	Si	-159.91135	10	Si	-165.02132
3	Ge	-159.77634	11	SiGe	-164.764495
4	Sn	-159.35969	12	Ge	-164.892518
		$R=CH_3$			$R=CH_3$
5	С	-272.76089	13	С	-233.445367
6	Si	-238.57861	14	Si	-165.02104
7	Ge	-238.43831	15	SiGe	-164.76431
8	Sn	-238.01917	16	Ge	-164.89225

Table S4. Total energies of reactants obtained by B3LYP/LANL2DZ* // B3LYP/LANL2DZ (a.u.)

 Table S5. Total energies of transition state structures obtained by

B3LYP/LANL2DZ*//B3LYP/LANL2DZ (a.u.)

		MR ₂ O	MR ₂			LR2 0	MR ₂ LR ₂
		R=H				R=H	
TS	M	exo,exo-	exo,endo-	TS	M, L	exo,exo-	exo,endo-
1	С	-501.50347	-501.50543	9	С	-540.81767	-540.82109
2	Si	-467.28650	-467.29371	10	Si	-472.39615	-472.39933
3	Ge	-467.15087	-467.15731	11	Si Ge	-472.26706	-472.27022
4	Sn	-466.73275	-466.73819	12	Ge	-472.13923	-472.14168
		$R=CH_3$				$R=CH_3$	
5	С	-580.11923	-580.13319	13	С	-698.06450	-698.07401
6	Si	-545.94572	-545.95765	14	Si	-629.71801	-629.72375
7	Ge	-545.80664	-545.81696	15	Si Ge	-629.45239	-629.45778
8	Sn	-545.38999	-545.39678	16	Ge	-629.58447	-629.59059

I able S	56. I otal en	lergies of reactants	obtained	t by B3LYP/LA	NL2DZ* (a.u.)
		R R			R M-R R R
		R=H			R=H
	Μ				
1	С	-194.12427	9	С	-233.44559
2	Si	-159.91135	10	Si	-165.02132
3	Ge	-159.77634	11	SiGe	-164.89252
4	Sn	-159.35969	12	Ge	-164.764495
		$R=CH_3$			$R=CH_3$
5	С	-272.76126	13	С	-390.71506
6	Si	-238.57926	14	Si	-322.35076
7	Ge	-238.43858	15	SiGe	-322.21682
8	Sn	-238.01952	16	Ge	-322.08378

Table S6. Total energies of reactants obtained by B3LYP/LANL2DZ* (a.u.)

1 40	10 57	• Total chergie	s of transition s	tate sti	uctures of	hanned by DJL I	1/L/11/L2DL (a.u
		MR ₂	MR ₂			LR2	MR2 LR2
R=H						R=H	
TS	Μ	exo,exo-	exo,endo-	TS	M, L	exo,exo-	exo,endo-
1	С	-501.50726	-501.51015	9	С		-540.82549
2	Si	-467.29035	-467.29754	10	Si		-472.40249
3	Ge	-467.15429	-467.16042	11	Si Ge		-472.27431
4	Sn	-466.73714	-466.74195	12	Ge		-472.14435
		$R=CH_3$				$R=CH_3$	
5	С	-580.12279	-580.13728	13	С		-698.08006
6	Si	-545.94981	-545.96186	14	Si	-629.72307	-629.72835
7	Ge	-545.81091	-545.82028	15	Si Ge	-629.58953	-629.59514
8	Sn	-545.39429	-545.40061	16	Ge	-629.45749	

Table S7. Total energies of transition state structures obtained by B3LYP/LANL2DZ* (a.u.)

 Table S8. AM1 activation energies in kJmol⁻¹

	2	MH ₂	H ₂ M		H ₂ L ^{MH2} H ₂ L		
TS	Μ	exo,exo-	exo,endo-	TS		exo,exo-	exo,endo-
1	С	138.7	134.6	9	M=L=C	143.5	138.1
2	Si	179.0	149.3	10	M=L=Si	186.3	166.6
3	Ge	140.9	135.4	11	M=Si,L=Ge	166.1	149.6
4	Sn	174.7	157.5	12	M=L=Ge	146.6	137.9

		MH ₂	H ₂ M			H ₂ L ^{MH} 2	H ₂ M H ₂ L
		R=H				R=H	
TS	M	exo,exo-	exo,endo-	TS	M, L	exo,exo-	exo,endo-
1	С	-131.0	-114.9	9	С	-165.5	-158.1
2	Si	-133.9	-122.1	10	Si	-175.9	-167.8
3	Ge	-144.3	-131.0	11	Si Ge	-181.2	-172.8
4	Sn	-136.2	-110.3	12	Ge	-185.9	-177.9
		R=CH ₃				R=CH ₃	
5	С	-121.6	-89.1	13	С	-128.2	-105.3
6	Si	-116.2	-113.3	14	Si	-165.5	-161.5
7	Ge	-129.9	-127.5	15	Si Ge	-171.9	-166.6
8	Sn	-153.3	-133.7	16	Ge	-178.2	-168.3

Table S9. B3LYP/LANL2DZ reactions' energies ΔH_{rxn} (in kJmol⁻¹)

`MH₂ MH₂ LH₂ M HOMO LUMO HOMO LUMO R=H1 C -5.91 -0.56 9 M=L=C -5.71 -0.73 **2** Si -6.35 -1.53 10 M=L=Si -6.49 -1.67 **3** Ge -6.36 -1.50 **11** M=Si,L=Ge -6.49 -1.65 **4** Sn -6.35 -1.53 12 M=L=Ge -6.49 -1.64 $R=CH_3$ **5** C -5.83 -0.63 13 M=L=C -0.73 -5.69 **6** Si -6.09 -1.31 14 M=L=Si -6.14 -1.37 7 Ge -6.09 -1.27 **15** M=Si,L=Ge -6.12 -1.35 **8** Sn -6.08 **-1.30 16** M=L=Ge -6.10 -1.33

Table S10. B3LYP/LANL2DZ FMO orbital energies in eV

I=HOMO_(diene)-LUMO_(alkene); II=HOMO_(alkene)-LUMO_(diene) 70xaNBD: HOMO=-6.19, LUMO= -0.95 eV

		MH ₂ O	H ₂ M			H ₂ L MH ₂ O	H ₂ M H ₂ L
		R=H				R=H	
TS	Μ	exo,exo-	exo,endo-	TS	M, L	exo,exo-	exo,endo-
1	С	-0.071	-0.067	9	С	-0.090	-0.054
2	Si	0.017	0.128	10	Si	0.045	0.035
3	Ge	0.005	0.009	11	Si Ge	0.049	0.055
4	Sn	0.030	0.002	12	Ge	0.040	0.041
		$R=CH_3$				$R=CH_3$	
5	С	-0.072	-0.071	13	С	-0.082	-0.080
6	Si	0.009	0.007	14	Si	0.003	0.001
7	Ge	0.007	0.007	15	Si Ge	0.010	0.024
8	Sn	0.018	0.028	16	Ge	0.004	0.011

Table S11. B3LYP/LANL2DZ quantum of charge transfer from diene to dienophile^a

^aNegative numbers = electron transfer from diene to dienophile (normal el. demand)

Table S12.Comparison of the length of the forming bond lengths (in Å) in TS1-16 calculated with the B3LYP/LANL2DZ and AM1 methods.

		MR ₂		MR2				MR2 LR2	Å	LR2	
		R	=H				R=H				
TS	Μ	exo,	exo-	exo,	endo-	TS	M,L	exo,	exo-	exo,e	endo-
		B3LYP	AM1	B3LYP	AM1			B3LYP	AM1	B3LYP	AM1
1	С	2.310; 2.347	2.155; 2.155	2.296; 2.298	2.141; 2.142	9	С	2.360; 2.361	2.171; 2.172	2.344; 2.345	2.161; 2.161
2	Si	2.353; 2.356	2.155; 2.156	2.324; 2.325	2.131; 2.135	10	Si	2.385; 2.392	2.181; 2.183	2.345; 2.386	2.166; 2.167
3	Ge	2.301; 2.414	2.161; 2.163	2.323; 2.332	2.143; 2.146	11	Si, Ge	2.377; 2.398	2.076; 2.312	2.324; 2.434	2.121; 2.228
4	Sn	2.371; 2.402	2.167; 2.168	2.324; 2.327	2.153; 2.155	12	Ge	2.385; 2.400	2.186; 2.188	2.365; 2.391	2.177; 2.178
		$R=CH_3$						$R=CH_3$			
5	С	2.326; 2.337	2.165; 2.170	2.325; 2.339	2.151; 2.155	13	С	2.336; 2.409	2.183; 2.195	2.311; 2.404	2.168; 2.177
6	Si	2.326; 2.405	2.123; 2.140	2.133; 2.333	2.133; 2.146	14	Si	2.401; 2.402	2.178; 2.190	2.360; 2.397	2.168; 2.168
7	Ge	2.361; 2.378	2.161; 2.163	2.339; 2.342	2.143; 2.144	15	Si Ge	2.300; 2.463	2.087; 2.301	2.338; 2.419	2.119; 2.230
8	Sn	2.370; 2.400	2.167; 2.176	2.334; 2.348	2.158; 2.159	16	Ge	2.403; 2.403	2.187; 2.190	2.384; 2.388	2.174; 2.176