Supplementary data

A concentration change method was used in order to confirm the exact stoichiometry of the complex. The concentration of 1 in the experiments was maintained constant to minimize the effect of 1, while the concentration of beta changed successively. The experiments were carried out in the higher concentration of 1 that was in the same magnitude order as that in preparation of the compound (10^{-2} M) , because at lower concentration of 1 the turning point of the absorbance-concentration (beta) curve is not so obvious.

Vis spectura in higher concentration of the TTF salt (comparing with those in Fig. 1)

SI-Fig. 1 Electronic spectra of the salt 1 $(1.25 \times 10^{-2} \text{ M})$ in H₂O-CH₃CN (1:1 v/v) with the increased concentration of bzta: 0, 0.625×10^{-2} , 1.25×10^{-2} , 1.875×10^{-2} , 2.50×10^{-2} , 3.125×10^{-2} , 3.75×10^{-2} , 4.375×10^{-2} , 5.00×10^{-2} , 5.625×10^{-2} , 6.25×10^{-2} and 6.875×10^{-2} , respectively.

Supplementary Material for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2006

SI-Fig, 2 Absorbance-concentration (beta) curves (a) 500 nm; (b) 485 nm. The resulted curves in this case gave an obvious turning at about 1: 1.7 mole ratio of **1** *vs* beta.