Unsymmetrically substituted side-bridged cyclam derivatives and their Cu(II) and Zn(II) complexes

Jan Plutnar, Jana Havlíčková, Jan Kotek,* Petr Hermann and Ivan Lukeš

Electronic Supplementary Information

S1 – Numbering scheme of **3** for NMR signals assignment

S1a – ¹³C and ¹H NMR signals assignment based on HSQC/HMBC/H-H COSY/NOESY 2D spectra

Assignment	¹³ C	¹ H
2	54.65	2.56
3	23.63	1.69
4	54.79	2.89
6	48.33	2.53
7	55.70	2.62
9	51.22	2.66
10	26.10	1.76
11	56.95	2.64
13	50.10	2.26, 3.02
14	48.09	2.58, 3.18
15	57.58	3.71
16	147.02	
17	129.70	7.45
18	123.29	8.18
19	146.89	

S2 – Numbering scheme of 4^+ for NMR signals assignment

S2a – ¹³C and ¹H NMR signals assignment based on HSQC/HMBC 2D spectra

Assignment	¹³ C	¹ H
2	56.64	4.15
3	20.04	2.40
4	52.26	3.33
6	52.74	3.38
7	54.24	3.36
9	56.14	3.25
10	22.02	2.26
11	55.13	3.63
13	45.88	3.90
14	56.34	4.27
15	63.17	4.46
16	168.46	
17	58.86	4.44
18	139.45	
19	134.94	7.73
20	126.60	8.33
21	150.67	
22	57.20	3.78
23	176.50	

S3 – ^{1}H - ^{1}H -COSY spectra of **3** in CDCl₃

S7 – gHMBC spectra of $\mathbf{3}$ in CDCl₃

S15 – Detail of aliphatic region in gHMBC spectra of ${\bf 4}$ in D_2O

	[Cu(3)Br][PF ₆]	4 ^{Br} · 2.5H ₂ O
Empirical formula	$C_{19}H_{31}CuN_5O_2BrF_6P$	$C_{21}H_{39}N_5O_{6.5}Br$
fw	649.91	545.48
Crystal shape	plate	prism
Color	blue	colourless
Crystal system	triclinic	monoclinic
Space group	P1 (No. 2)	<i>C</i> 2/c (No. 15)
a (Å)	6.9960(4)	19.4788(4)
b (Å)	10.2570(8)	19.7272(4)
c (Å)	17.8780(15)	13.7214(3)
α (deg)	73.592(3)	90
β (deg)	84.539(5)	97.7160(11)
γ (deg)	80.636(4)	90
<i>V</i> (ų)	1212.60(16)	5224.88(19)
Ζ	2	8
ρ_{calc} (g·cm ⁻³)	1.780	1.387
Т (К)	150(1)	150(1)
μ (mm ⁻¹)	2.688	1.619
F (000)	658	2296
$\boldsymbol{\theta}$ range of data collection (deg)	2.09–27.47	3.44–27.50
Index ranges, hkl	-8 to 7, -13 to 13, -23 to 23	-25 to 25, -25 to 25, -17 to 17
Reflections measured	5090	5978
Reflections observed $[I > 2\sigma(I)]$	3452	4839
Data, restraints, parameters	5090, 0, 327	5978, 0, 311
Goodness-of-fit on F^2	1.993	1.045
Wavelength (Å)	0.71073	0.71073
$R, R' [I > 2\sigma (I)]^{\dagger}$	0.2134, 0.1759	0.0736, 0.0590
wR, wR' [$I \ge 2\sigma$ (I)] [†]	0.5043, 0.4889	0.1828, 0.1680
Maximum shift/esd	0.004	0.000
$\Delta \rho_{\text{max, min}}$ (e·Å ⁻³)	2.415, -2.128	0.907, -0.935

 $W = 1/[\sigma^{2}(F_{o}^{2}) + (AP)^{2} + BP], P = (F_{o}^{2} + 2F_{c}^{2})/3; R, R' = \Sigma|F_{o} - F_{c}|/\Sigma|F_{c}|, WR, WR' = [\Sigma W(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma W(F_{o}^{2})^{2}]^{1/2}$

S18 Distribution of species in system $Cu^{\rm I}$ / $\boldsymbol{3}^{\dagger}$

S19 Distribution of species in system Zn^{II} / 3^{\dagger}

S20 Distribution of species in solutions[†] of $\mathbf{6}$

S21 Distribution of species in system Cu $^{\rm II}$ / 6^{\dagger}

