Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2008

Fig. S1. Geometries of isolated aniline derivatives ($IA \sim IK$) and corresponding hydrated complexes ($IIA \sim IIK$) calculated at the B3LYP/6-311++G(d,p) level of theory (bond length in Å and angle in degree; the *italics* indicate experimental data; the black dots indicate bond critical points).

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2008

Table S1 The C–N Bond Lengths (R_{C-N}) and Proton Donating N–H Bond Lengths (R_{N-H}) and Stretching Frequencies (v_{N-H}) in all *para*-substituted Aniline Monomers (I) and All Corresponding Monohydrated Complexes (II) and Variations of N–H Bond Lengths (ΔR_{N-H}) and C–N Bond lengths (ΔR_{C-N}) and N-H Stretching Frequencies (v_{N-H}) and Corresponding Red Shifts of Frequencies (Δv_{N-H}) upon Formation of the Complex, Calculated at the B3LYP/6-311++G(d, p) Level of Theory and Some Experimental Values of Frequencies in Brackets

	Bond Length, Å						Stretching Frequency, cm ⁻¹					
Х	$R_{ m C-N}$		$\Delta R_{\rm C-N}^{a}$	$R_{ m N-H}$		$\Delta R_{\rm N-H}^{\ \ b}$	$v_{\rm as N-H}$		$\Delta v_{\mathrm{as N-H}}^{c}$	V _{s N-H}		$\Delta v_{\mathrm{s N-H}}^{d}$
	Ι	II	II – I	Ι	II	II – I	Ι	II	II – I	Ι	II	II – I
NH ₂	1.4087	1.4030	-0.0057	1.0105	1.0134	0.0029	3644.4	3635.7	-8.7	3551.8	3529.7	-22.1
OH	1.4059	1.4002	-0.0057	1.0101	1.0132	0.0031	3651.1	3642.0	-9.1	3557.7	3532.8	-24.9
CH ₃	1.4011	1.3946	-0.0065	1.0096	1.0128	0.0032	3659.9	3649.6	-10.3	3563.9	3536.2	-27.7
Н	1.3986	1.3915	-0.0071	1.0093	1.0128	0.0035	3666.1	3654.8	-11.3	3568.6	3532.0	-36.6
							(3508.2) ^e	(3485.0) ^f	-23.2	(3421.8) ^e	(3383.0) ^f	-38.8
F	1.4008	1.3945	-0.0063	1.0095	1.0129	0.0034	3661.9	3651.4	-10.5	3566.4	3536.0	-30.4
PH_{2}	1.3931	1.3855	-0.0076	1.0088	1.0126	0.0038	3673.8	3662.6	-11.2	3574.3	3538.8	-35.5
SiH ₃	1.3928	1.3852	-0.0076	1.0088	1.0126	0.0038	3674.5	3662.9	-11.6	3574.5	3539.2	-35.3
Cl	1.3962	1.3894	-0.0068	1.0090	1.0128	0.0038	3669.4	3657.5	-11.9	3571.7	3536.6	-35.1
СНО	1.3816	1.3727	-0.0089	1.0077	1.0123	0.0046	3694.3	3681.6	-12.7	3588.7	3540.0	-48.7
CN	1.3834	1.3752	-0.0082	1.0079	1.0125	0.0046	3691.1	3677.8	-13.3	3587.1	3538.3	-48.8
							(3538.0) ^g	(3532.0) ^g	-6.0	(3445.0) ^g	(3420.0) ^g	-25.0
NO ₂	1.3776	1.3685	-0.0091	1.0073	1.0124	0.0051	3701.7	3687.9	-13.8	3594.5	3537.8	-56.7
							(3510.0) ^h	(3477.0) ^h	-33.0	$(3412.0)^{h}$	$(3361.0)^{h}$	-51.0
			1							,		

 ${}^{a}\Delta R_{C-N} = R_{C-N}(II) - R_{C-N}(I); {}^{b}\Delta R_{N-H} = R_{N-H}(II) - R_{N-H}(I); {}^{c}\Delta v_{as N-H} = v_{as N-H}(II) - v_{as N-H}(I); {}^{d}\Delta v_{s N-H} = v_{s N-H}(II) - v_{s N-H}(II) - v_{s N-H}(II);$ _{N-H}(I); ^{*e*} From Ref. 48; ^{*f*} From Ref. 49; ^{*g*} From Ref. 10; ^{*h*} From Ref. 50.