SUPPLEMENTARY INFORMATION FOR

Ring-chain tautomerism and protolytic quilibria of 3-hydroxy-3-phosphonoisobenzofuranone studied by ¹H, ¹³C, and ³¹P NMR-controlled titrations

Sven Augner,^a Jan Kehler,^b Zoltán Szakács,^{a,c} Eli Breuer,^b* and Gerhard Hägele^{a*}

^aInorganic Chemistry and Structural Chemistry, Heinrich-Heine-University Düsseldorf. Universitätsstrasse 1, D-40225-Düsseldorf, Germany. Phone +49-211-81-13166. Fax +49-211-81-11854. Email: haegele@uni-duesseldorf.de

^bDepartment of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, P.O.B. 12065, Jerusalem 91120, Israel. Phone +972-2-675-8704, Fax +972-2-675-8934. Email: eli.breuer@huji.ac.il

^cLaboratory for Speciation, Drug and Trace Analysis, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary. Email: szakacsz@chem.elte.hu

Fig. S1. Potentiometric pH,τ-titration curve of 3-hydroxy-3-phosphonoisobenzofuranone **6** with TMAOH at 1 M ionic strength (TMACl)

Fig. S2. 202 MHz ³¹P{¹H} NMR-controlled titration of **6** with 1 M TMAOH. Stacked pH,δ-plot

Fig. S3. 202 MHz ${}^{31}P{}^{1}H$ NMR-controlled titration of 6 with 1 M TMAOH. Contour τ , δ -plot

Fig. S4. 202 MHz ${}^{31}P{}^{1}H$ NMR-controlled titration of **6** with 1 M TMAOH. Contour pH, δ -plot.

Fig. S5. δ_P (square) and $d\delta_P dp H^{-1}$ (triangle) vs. pH from the 202 MHz ${}^{31}P{}^{1}H$ NMR titration of **6**.

Fig. S6. δ_P (square) and ³¹P spectral half-width HW (triangle) vs. degree of titration τ from the 202 MHz ³¹P{¹H} NMR titration of **6**

Fig. S7. 500 MHz ¹H NMR-controlled titration of 6 with 1 M TMAOH. Contour τ , δ -plot

Fig. S8. 500 MHz ¹H NMR-controlled titration of **6** with 1 M TMAOH. Stacked pH,δ-plot

Fig. S9. 500 MHz ¹H NMR-controlled titration of **6** with 1 M TMAOH. Contour pH,δ-plot

Fig. S10. 202 MHz ³¹P{¹H} NMR-controlled titration curve of **6** vs. TMAOH at 1 M ionic strength (TMACl), fitted by the OPIUM software

Fig. S11. 500 MHz ¹H NMR-controlled titration curves of **6** vs. TMAOH at 1 M ionic strength (TMACl), fitted by the OPIUM software

Fig. S12. Potentiometric titration curve, fitted by the OPIUM software from the 202 MHz ${}^{31}P{}^{1}H{}$ NMR-controlled titration of **6** with TMAOH. The lower trace represents the (observed-calculated) residuals, plotted by using a magnification factor of 20.

Table S1. ¹H and ¹³C chemical shift gradients, $\Delta = \delta(\text{in KOD}) - \delta(\text{in D}_2\text{O})$ (ppm) of **6-8**, measured in D₂O and KOD solutions

	D ₂ O / KOD		D ₂ O / KOD
	Gradient Δ		Gradient Δ
H_1	- 0.5628	C _{VI}	+0.894
H_2	- 0.3867	C _{III}	- 7.912
H ₃	+0.6447	C _{VII}	+ 7.549
H_4	- 0.1529	C _{IV}	+ 1.015
		CI	+7.767
		Сп	-6.701
		Cv	+9.059
		C _{VIII}	+111.993

Table S2. 500 MHz ¹H NMR parameters of 3-hydroxy-3-phosphonoisobenzofuranone (6): a) 0.2510 M in D₂O; b) 0.1010 M in 1 M KOD. Chemical shifts $\delta_{\rm H}$ (ppm), resonance frequencies $v_{\rm H}$ (Hz), coupling constants ⁿJ_{HH} (Hz) and spectral half widths HW (Hz) ^c n.i. = not iterated

Solvent		D ₂	0 ^a	KOD ^b		
Species		H ₃ L <	$< H_2 L^2$	L ³⁻		
δi	Туре	Data	Error	Data	Error	
1	$\delta_{\rm H}$	7.9242		7.3540		
2	$\delta_{\rm H}$	7.8654		7.4832		
3	$\delta_{\rm H}$	7.7967		8.4423		
4	$\delta_{\rm H}$	7.7242		7.5717		
5	δ _P	9.398		-0.6386		
ν_i	Туре	Data	Error	Data	Error	
1	$\nu_{\rm H}$	3963.1894	± 0.0009	3677.9346	± 0.0010	
2	$\nu_{\rm H}$	3933.7422	± 0.0008	3742.5942	± 0.0006	
3	$\nu_{\rm H}$	3899.3410	± 0.0009	4222.2400	± 0.0007	
4	$\nu_{\rm H}$	3863.0805	± 0.0009	3786.8131	± 0.0006	
5	ν_{P}	1902.8221	n. i. ^c	-129.2945	n. i.	
J _{ik}	Туре	Data	Error	Data	Error	
12	$^{4}J_{HH}$	1.0387	± 0.0010	1.2611	± 0.0009	
13	${}^{5}J_{HH}$	0.8136	± 0.0041	0.5820	± 0.0007	
14	$^{3}J_{HH}$	7.7308	± 0.0012	7.6065	± 0.0013	
15	${}^{5}J_{PH}$	0.7308	± 0.0035	1.2932	± 0.0022	
23	$^{3}J_{HH}$	7.7421	± 0.0012	7.8928	± 0.0009	
24	³ J _{HH}	7.4592	± 0.0013	7.4479	± 0.0012	
25	${}^{5}J_{PH}$	0.2137	± 0.0048	0.3392	± 0.0021	
34	$^{4}J_{HH}$	0.8480	± 0.0080	1.2202	± 0.0006	
35	$^{4}J_{PH}$	1.0800	± 0.0054	0.2183	± 0.0021	
45	⁶ J _{PH}	0.9908	± 0.0086	0.3228	± 0.0017	
Half width	Туре	Data	Error	Data	Error	
1	HW _H	0.7976	± 0.0020	0.7688	± 0.0018	
2	HW _H	0.8057	± 0.0024	0.6953	± 0.0018	
3	HW_{H}	0.8300	± 0.0028	0.6377	± 0.0017	
4	HW_{H}	0.8409	± 0.0020	0.7174	± 0.0014	
5	HW _P	3.0630	n. i.	2.0550	n. i.	

Table S3. Chemical shifts δ_{C} (ppm) monitored for six selected titration states of **6**. a) aromatic carbons C_{III}, C_{IV}, C_{VI}, C_{VII} connected to protons; b) aromatic carbons C_{II}, C_V not connected to protons. c) C_I COOH / COO⁻; d) C_{VIII} COH / CO. n.o. = not observed. br = broad lines. vbr = very broad lines. Only a few coupling constants (Hz) were resolved: ¹J_{PC} of C_{VIII}: 199.7 (τ = 0), 197.2 (τ = 0.5), 160.1 (τ = 3); ²J_{PC} of C_{II}: 4.7 (τ = 0), 4.5 (τ = 3); ³J_{PC} of C_V : 47.4 (τ = 3).

τ	0	0.5	1	1.5	2	3			
	Chemical shifts δ_C								
CI	173.91	174.21	174.62	175.66 br	178.25	181.82			
CII	148.70	149.30	149.52 br	148.56 vbr	144.75 br	142.16			
C _{III}	138.32	138.20	137.91 br	136.92 vbr	134.29 br	130.39			
C _{IV}	134.05	133.83	133.65	133.59	134.03	135.02			
Cv	128.37	128.38	128.78 br	129-132 vbr	135.01 br	137.40			
C _{VI}	128.23	128.12	128.07	128.14 br	128.50	129.14			
C _{VII}	126.60	126.58	126.74 br	127.58 vbr	130.17 br	134.16			
C _{VIII}	107.10	107.84	n.o.	n.o.	n.o.	219.43			