Supporting Information

Six-coordinate Co^{III} and four-coordinate M^{II} (M = Co, Zn) mixedvalence dimers supported by a deprotonated pyridine amide ligand: magnetism of a $Co^{III}Co^{II}$ complex and C–H^{...}O/Cl/Br interactions

Wilson Jacob,^{*a*} Haritosh Mishra,^{*a*} Sharmila Pandey,^{*a*} Francesc Lloret^{*b*} and Rabindranath Mukherjee^{**a*}

^a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. E-mail: <u>rnm@iitk.ac.in</u>

^b Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980-Paterna (València), Spain

Supplementary Figures

δ/ppm

Fig. S1 ¹H NMR spectrum (500 MHz) of $[Co^{III}Zn^{II}(L)_3(CI)]CI^{\cdot}CH_3OH^{\cdot}5H_2O$ (3) in CD₃CN at 298 K (water peak is marked by *).

Fig. S2 Absorption spectrum (CH₃CN) of [Co^{III,II}₂(L)₃(Cl)]Cl (1).

Fig. S3 Perspective view of the formation of a dimer through C–H^{...}O hydrogen-bonding of $[Co^{III,II}_2(L)_3Cl]^+$ unit in $[Co^{III,II}_2(L)_3(Cl)]Cl$ (1). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. Dimer is generated by the symmetry operator 2-x, -y, -z.

Fig. S4 View of the formation of 1D chain *via* C–H^{...}O hydrogen-bonding of $[Co^{III,II}_2(L)_3(Cl)]^+$ unit in $[Co^{III,II}_2(L)_3(Cl)]Cl$ (1). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. ID chain is generated by the symmetry operators 2-x, -y, -z; -1+x, y, z and 1+x, y, z.

Fig. S5 View of the formation of a dimer through C–H^{...}O hydrogen-bonding of $[Co^{III,II}_{2}(L)_{3}(Br)]^{+}$ unit in $[Co^{III,II}_{2}(L)_{3}(Br)]Br^{-}CH_{3}OH$ (2). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. Dimer is generated by the symmetry operator 2-x, -y, 1-z.

Fig. S6 View of the formation of 2D network *via* C–H^{...}O hydrogen-bonding of $[Co^{III,II}_{2}(L)_{3}(Br)]^{+}$ unit in $[Co^{III,II}_{2}(L)_{3}(Br)]BrCH_{3}OH$ (2). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 2D network is generated by the symmetry operator 1-x, 1- y, -z and 1-x, -y, 1-z.

Fig. S7 View of the formation of 1D chain *via* C–H^{...}Br hydrogen-bonding of $[Co^{III,II}_2(L)_3(Br)]^+$ unit in $[Co^{III,II}_2(L)_3(Br)]BrCH_3OH$ (2). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 1D chain is generated by the symmetry operators x, y, z; x, 1+y, z; x, -1+y, z; 1+x, y, 1+z and -1+x, y, -1+z.

Fig. S8 View (*bc* plane) of the formation of 3D network in $[Co^{III,II}_2(L)_3(Br)]^+$ unit in $[Co^{III,II}_2(L)_3(Br)]BrCH_3OH$ (**2**) *via* C–H^{...}Br and C–H^{...}O hydrogen-bonding contacts. All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 3D network is generated by the symmetry operators x, y, z; 1+x, y, 1+z; -1+x, y, -1+z; 2-x, -y, 1-z; 1-x, -y, 1-z; x, 1+y, z and x, -1+y, z.

Fig. S9 View (*ab* plane) of the formation of 3D network in $[Co^{III,II}_2(L)_3(Br)]^+$ unit in $[Co^{III,II}_2(L)_3(Br)]BrCH_3OH$ (**2**) *via* C–H^{...}Br and C–H^{...}O hydrogen-bonding contacts. All

the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity.

Fig. S10 View of the formation of a dimer through C–H^{...}O hydrogen-bonding of $[Co^{III}Zn^{II}(L)_3(Cl)]^+$ unit in $[Co^{III}Zn^{II}(L)_3(Cl)]Cl^{\cdot}CH_3OH^{\cdot}5H_2O$ (3). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. Dimer is generated by the symmetry operator 1-x, -y, -z.

Fig. S11 View (*ac* plane) of the formation of the 1D chain *via* C–H^{...}O and C–H^{...}Cl hydrogen-bonding of $[Co^{III}Zn^{II}(L)_3(Cl)]^+$ unit in $[Co^{III}Zn^{II}(L)_3(Cl)]Cl^{\cdot}CH_3OH^{\cdot}5H_2O$ (**3**). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 1D chain is generated by the symmetry operator 1-x, -y, -z; -1+x, y, z; 1+x, y, z and -x, -y, -z.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Fig. S12 $\chi_{\rm M}T$ *vs. T* data and best theoretical plot for $[{\rm Co}^{\rm III,II}_2(L)_3({\rm Cl})]{\rm Cl}$ (1).

Fig. S13 Cyclic voltammogram (scan rate: 100 mV s⁻¹) of ~1.0 mM solution of $[Co^{III,II}_2(L)_3(Cl)]Cl$ (1) in CH₃CN (~0.1 M in TBAP) at a Pt working electrode. Indicated potentials (in V) are *vs.* SCE.