Supporting Information

Six-coordinate $\mathrm{Co}^{\text {III }}$ and four-coordinate $\mathrm{M}^{\mathrm{II}}(\mathrm{M}=\mathrm{Co}, \mathrm{Zn})$ mixedvalence dimers supported by a deprotonated pyridine amide ligand: magnetism of a $\mathrm{Co}^{\mathrm{III}} \mathrm{Co}^{\text {II }}$ complex and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O} / \mathrm{Cl} / \mathrm{Br}$ interactions

Wilson Jacob, ${ }^{a}$ Haritosh Mishra, ${ }^{a}$ Sharmila Pandey, ${ }^{a}$ Francesc Lloret ${ }^{b}$ and Rabindranath Mukherjee ${ }^{* a}$
${ }^{a}$ Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. E-mail: rnm@iitk.ac.in
${ }^{\text {b }}$ Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980-Paterna (València), Spain

Supplementary Figures

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of $\left[\mathrm{Co}^{\mathrm{III}} \mathrm{Zn}^{\mathrm{II}}(\mathrm{L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}^{-} \mathrm{CH}_{3} \mathrm{OH}^{\cdot} 5 \mathrm{H}_{2} \mathrm{O}$ (3) in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K (water peak is marked by *).

Fig. S2 Absorption spectrum $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ of $\left[\mathrm{Co}^{\mathrm{IIIIII}}{ }_{2}(\mathrm{~L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}(\mathbf{1})$.

Fig. S3 Perspective view of the formation of a dimer through C $-\mathrm{H}^{\cdots}$ O hydrogen-bonding of $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3} \mathrm{Cl}\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}}{ }_{2}(\mathrm{~L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}(\mathbf{1})$. All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. Dimer is generated by the symmetry operator $2-\mathrm{x},-\mathrm{y},-\mathrm{z}$.

Fig. S4 View of the formation of 1D chain via $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen-bonding of $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3}(\mathrm{Cl})\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{IIIIII}_{2}}(\mathrm{~L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}(\mathbf{1})$. All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. ID chain is generated by the symmetry operators $2-\mathrm{x},-\mathrm{y},-\mathrm{z} ;-1+\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $1+\mathrm{x}, \mathrm{y}, \mathrm{z}$.

Fig. S5 View of the formation of a dimer through $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen-bonding of $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3}(\mathrm{Br})\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3}(\mathrm{Br})\right] \mathrm{Br}^{\cdot} \mathrm{CH}_{3} \mathrm{OH}(2)$. All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. Dimer is generated by the symmetry operator $2-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$.

Fig. S6 View of the formation of 2D network via $\mathrm{C}-\mathrm{H}^{\cdots}{ }^{\circ} \mathrm{O}$ hydrogen-bonding of $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3}(\mathrm{Br})\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{IIIIII}}{ }_{2}(\mathrm{~L})_{3}(\mathrm{Br})\right] \mathrm{Br}^{\cdot} \mathrm{CH}_{3} \mathrm{OH}(2)$. All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 2D network is generated by the symmetry operator $1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$ and $1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$.

Fig. S7 View of the formation of 1D chain via $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Br}$ hydrogen-bonding of $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}}{ }_{2}(\mathrm{~L})_{3}(\mathrm{Br})\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3}(\mathrm{Br})\right] \mathrm{BrCCH}_{3} \mathrm{OH}(2)$. All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 1D chain is generated by the symmetry operators $\mathrm{x}, \mathrm{y}, \mathrm{z} ; \mathrm{x}, 1+\mathrm{y}, \mathrm{z} ; \mathrm{x},-1+\mathrm{y}, \mathrm{z} ; 1+\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$ and $-1+\mathrm{x}, \mathrm{y},-1+\mathrm{z}$.

Fig. S8 View (bc plane) of the formation of 3D network in $\left[\mathrm{Co}^{\mathrm{IIIIII}} 2(\mathrm{~L})_{3}(\mathrm{Br})\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}}{ }_{2}(\mathrm{~L})_{3}(\mathrm{Br})\right] \mathrm{BrCH}_{3} \mathrm{OH}(2)$ via $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Br}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen-bonding contacts. All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 3D network is generated by the symmetry operators $x, y, z ; 1+x, y, 1+z ;-1+x, y,-$ $1+z ; 2-x,-y, 1-z ; 1-x,-y, 1-z ; 1-x, 1-y,-z ; x, 1+y, z$ and $x,-1+y, z$.

Fig. S9 View ($a b$ plane) of the formation of 3D network in $\left[\mathrm{Co}^{\mathrm{IIIIII}}{ }_{2}(\mathrm{~L})_{3}(\mathrm{Br})\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3}(\mathrm{Br})\right] \mathrm{Br}^{\circ} \mathrm{CH}_{3} \mathrm{OH}$ (2) via $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Br}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen-bonding contacts. All
the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity.

Fig. S10 View of the formation of a dimer through $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen-bonding of $\left[\mathrm{Co}^{\mathrm{III}} \mathrm{Zn}^{\mathrm{II}}(\mathrm{L})_{3}(\mathrm{Cl})\right]^{+}$unit in $\left[\mathrm{Co}^{\text {III }} \mathrm{Zn}^{\text {II }}(\mathrm{L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}^{-} \mathrm{CH}_{3} \mathrm{OH}^{\cdot} \cdot \mathrm{H}_{2} \mathrm{O}$ (3). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. Dimer is generated by the symmetry operator $1-\mathrm{x},-\mathrm{y},-\mathrm{z}$.

Fig. S11 View (ac plane) of the formation of the 1D chain via $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Cl}$ hydrogen-bonding of $\left[\mathrm{Co}^{\mathrm{III}} \mathrm{Zn}^{\mathrm{II}}(\mathrm{L})_{3}(\mathrm{Cl})\right]^{+}$unit in $\left[\mathrm{Co}^{\mathrm{III}} \mathrm{Zn}^{\mathrm{II}}(\mathrm{L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}^{-} \mathrm{CH}_{3} \mathrm{OH}^{-} 5 \mathrm{H}_{2} \mathrm{O}$ (3). All the hydrogen atoms except those involved in hydrogen-bonding have been omitted for clarity. 1D chain is generated by the symmetry operator $1-x,-y,-z ;-1+x, y, z ; 1+x, y$, z and $-x,-y,-z$.

Fig. $\mathbf{S 1 2} \chi_{\mathrm{M}} T$ vs. T data and best theoretical plot for $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}}{ }_{2}(\mathrm{~L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}(\mathbf{1})$.

Fig. S13 Cyclic voltammogram (scan rate: $100 \mathrm{mV} \mathrm{s}^{-1}$) of $\sim 1.0 \mathrm{mM}$ solution of $\left[\mathrm{Co}^{\mathrm{III}, \mathrm{II}} 2(\mathrm{~L})_{3}(\mathrm{Cl})\right] \mathrm{Cl}(\mathbf{1})$ in $\mathrm{CH}_{3} \mathrm{CN}(\sim 0.1 \mathrm{M}$ in TBAP) at a Pt working electrode. Indicated potentials (in V) are vs. SCE.

