Synthesis, crystal structure and luminescence property of lanthanide

oxalatophosphonates with a three-dimensional framework structure

Yanyu Zhu, Zhengang Sun,* Yan Zhao, Jing Zhang, Xin Lu, Na Zhang, Lei Liu and Fei Tong

Institute of Chemistry for Functionalized Materials, Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China

Fig. S1 The simulated XRD pattern of compound 1 (up) and the experimental powder XRD patterns of compounds 1–6 (down).

Fig. S2 The experimental powder XRD pattern of compound **1** (*a*), dehydrated sample after calcination at 150 °C (b), 180 °C (c).

	1 (La)	2 (Ce)	3 (Pr)	4 (Nd)	5 (Sm)	6 (Eu)	
Ln(1)–O(3)#1 ^a	2.415(2)	2.389(3)	2.372(3)	2.360(3)	2.336(3)	2.330(3)	
Ln(1)–O(2)	2.515(2)	2.492(3)	2.481(3)	2.471(3)	2.449(4)	2.439(3)	
Ln(1)–O(7)	2.535(3)	2.510(3)	2.493(3)	2.476(3)	2.454(4)	2.449(3)	
Ln(1)–O(6)#2	2.557(2)	2.538(3)	2.522(3)	2.504(3)	2.485(3)	2.480(3)	
Ln(1)–O(5)	2.587(2)	2.574(3)	2.559(3)	2.545(3)	2.521(3)	2.518(3)	
Ln(1)–O(9)	2.594(3)	2.562(3)	2.537(4)	2.520(4)	2.484(5)	2.476(3)	
Ln(1)–O(8)#3	2.599(2)	2.580(3)	2.571(3)	2.557(3)	2.542(4)	2.537(3)	
Ln(1)-O(10)	2.609(3)	2.571(3)	2.542(4)	2.523(4)	2.485(4)	2.472(3)	
Ln(1)-O(4)#2	2.610(2)	2.595(3)	2.573(3)	2.563(3)	2.544(3)	2.542(3)	
^a Symmetry transformations used to generate equivalent atoms: $\#1 - x + 2$, $-y$, $-z + 2$; $\#2 - x + 2$, $y + 1/2$, $-z + 2$							
3/2; #3 -x + 1, -y, -z + 1.							

Table S1 Selected bond lengths (Å) for compounds 1-6

Table S2 Sel	ected angles	(°) for c	ompounds	1–6
--------------	--------------	-----------	----------	-----

	1 (La)	2 (Ce)	3 (Pr)	4 (Nd)	5 (Sm)	6 (Eu)
O(2)–Ln(1)–O(3)#1 ^a	74.39(8)	74.69(9)	74.73(11)	74.73(11)	74.78(12)	74.73(10)
O(7)–Ln(1)–O(3)#1	134.77(8)	134.80(9)	134.96(11)	135.08(11)	135.31(12)	135.34(10)
O(2)–Ln(1)–O(7)	140.07(8)	139.07(9)	138.41(11)	138.14(11)	137.81(12)	137.73(10)
O(3)#1-Ln(1)-O(6)#2	83.68(8)	84.57(9)	84.84(11)	85.16(10)	85.22(12)	85.33(9)
O(2)-Ln(1)-O(6)#2	75.69(7)	75.10(9)	74.61(10)	74.08(10)	73.51(12)	73.34(9)
O(7)-Ln(1)-O(6)#2	125.53(8)	126.09(9)	126.65(11)	126.87(10)	127.17(12)	127.28(9)
O(3)#1-Ln(1)-O(5)	95.40(9)	95.35(10)	95.17(12)	94.99(11)	94.97(13)	94.87(10)
O(2)–Ln(1)–O(5)	71.43(7)	71.48(8)	71.74(11)	71.91(10)	72.08(12)	72.15(9)
O(7)–Ln(1)–O(5)	78.11(8)	77.15(9)	76.40(11)	76.14(10)	75.85(12)	75.73(10)
O(6)#2-Ln(1)-O(5)	146.03(8)	145.28(9)	145.04(12)	144.63(11)	144.22(13)	144.10(10)
O(3)#1-Ln(1)-O(9)	142.17(9)	142.47(10)	142.45(12)	142.41(12)	142.52(14)	142.57(11)
O(2)-Ln(1)-O(9)	68.21(8)	67.98(10)	67.83(11)	67.73(11)	67.77(13)	67.85(10)
O(7)-Ln(1)-O(9)	80.96(9)	79.89(10)	79.20(12)	78.74(12)	78.11(13)	77.83(10)
O(6)#2-Ln(1)-O(9)	81.90(9)	82.32(10)	82.73(13)	82.89(12)	83.11(14)	83.32(11)
O(5)-Ln(1)-O(9)	78.27(9)	76.79(10)	76.14(12)	75.58(12)	75.13(14)	74.87(11)
O(3)#1-Ln(1)-O(8)#3	72.58(8)	71.85(9)	71.61(10)	71.28(10)	70.88(12)	70.85(9)
O(2)–Ln(1)–O(8)#3	126.02(8)	126.40(9)	126.70(11)	126.87(10)	126.91(12)	127.13(10)
O(7)-Ln(1)-O(8)#3	62.98(8)	63.46(9)	63.71(10)	64.08(10)	64.66(11)	64.68(9)
O(6)#2-Ln(1)-O(8)#3	139.23(8)	139.41(10)	139.46(11)	139.60(11)	139.63(13)	139.56(10)
O(5)-Ln(1)-O(8)#3	70.60(8)	71.36(10)	71.53(12)	71.76(12)	71.98(13)	72.18(11)
O(9)-Ln(1)-O(8)#3	135.96(9)	135.49(10)	135.15(12)	135.00(12)	134.93(14)	134.76(11)
O(3)#1-Ln(1)-O(10)	75.04(9)	75.68(10)	76.10(12)	76.26(12)	76.58(14)	76.72(11)
O(2)-Ln(1)-O(10)	138.18(9)	138.37(11)	138.25(12)	137.96(12)	137.90(14)	137.88(12)
O(7)–Ln(1)–O(10)	81.51(9)	82.24(11)	82.97(13)	83.46(13)	83.76(14)	83.85(12)
O(6)#2-Ln(1)-O(10)	73.19(9)	73.59(11)	73.61(13)	73.76(13)	73.95(15)	74.08(12)
O(5)-Ln(1)-O(10)	139.47(9)	140.09(11)	140.38(13)	140.66(13)	140.93(15)	140.93(12)
O(9)-Ln(1)-O(10)	132.27(9)	132.49(10)	132.61(13)	132.88(12)	132.78(14)	132.87(11)
O(8)#3-Ln(1)-O(10)	68.96(10)	68.89(11)	69.03(14)	69.09(13)	69.21(15)	69.01(12)
O(3)#1-Ln(1)-O(4)#2	134.41(8)	135.64(9)	136.25(11)	136.76(10)	137.15(13)	137.31(9)
O(2)-Ln(1)-O(4)#2	117.96(7)	117.50(9)	117.27(10)	117.02(10)	116.85(12)	116.89(9)
O(7)-Ln(1)-O(4)#2	65.21(7)	65.21(8)	65.32(10)	65.23(10)	65.04(12)	64.99(9)
O(6)#2-Ln(1)-O(4)#2	60.76(7)	61.20(8)	61.58(10)	61.83(9)	62.29(11)	62.43(9)
O(5)-Ln(1)-O(4)#2	130.11(8)	128.93(9)	128.51(11)	128.18(10)	127.80(12)	127.73(9)
O(9)-Ln(1)-O(4)#2	64.06(8)	64.08(9)	64.28(11)	64.40(11)	64.39(13)	64.54(10)
O(8)#3-Ln(1)-O(4)#2	115.73(7)	115.78(9)	115.71(10)	115.80(10)	115.94(12)	115.70(10)
O(10)-Ln(1)-O(4)#2	68.27(9)	68.44(10)	68.36(12)	68.51(11)	68.41(13)	68.35(11)
^a Symmetry transformation # $3 - x + 1, -y, -z + 1.$	ons used to ger	nerate equivaler	nt atoms: #1 -x	+ 2, -y, -z + 2	; #2 -x + 2, y -	+ 1/2, -z + 3