Supporting information

Solvent-Sensitive Charge-Transfer Absorption Behaviours and Dual-Emissive Fluorescent Property of a Thiazole-Conjugated Pyridinium Complex

Zhan-Xian Li,^{a,b} Chun-Hu Xu,^a Wei Sun,^a Yan-Chun Bai,^a Chao Zhang,^a Chen-Jie Fang,^a and Chun-Hua Yan^{* a}

- ^a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China. Fax: +86-10-6275-4179, E-mail: yan@pku.edu.cn
- ^b Laboratory of Functional Materials, Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

1. Absorption spectra

В

Fig. S1 Changes of absorption spectra of **4-MeB** (left) and absorbance changes at the specific wavelength (right) in 1,4-dioxane (A) and EtOAc (B) with the concentration decreased. Solid lines in the right of Fig. (A) and (B) represent fit lines of the absorbance at specific wavelength to the concentration of **4-MeB**. The concentration of **4-MeB** changes from 1.0×10^{-4} mol·L⁻¹ to 8.6×10^{-6} mol·L⁻¹ in 1,4-dioxane and from 4.0×10^{-5} to 1.9×10^{-5} mol·L⁻¹ in EtOAc.

Fig. S2 Absorption spectra of **4-MeB** in 1,4-dioxane ($c = 1.0 \times 10^{-4} \text{ mol} \cdot L^{-1}$) (solid line: **4-MeB** only; dash line: **4-MeB** with AgPF₆ added; dot line: **4-MeB** with AgPF₆ and (n-Bu)₄NBr added sequentially). Insert: color changes of **4-MeB** in 1,4-dioxane (from left to right: **4-MeB** only; **4-MeB** with AgPF₆ added; **4-MeB** with AgPF₆ and (*n*-Bu)₄NBr added sequentially).

Fig. S3 Absorption spectra of **4-MeB** in THF ($c = 1.2 \times 10^{-4} \text{ mol} \cdot L^{-1}$) (solid line: **4-MeB** only; dash line: **4-MeB** with AgPF₆ added; dot line: (*n*-Bu)₄NI only; dash dot: **4-MeB** with AgPF₆ and (*n*-Bu)₄NI added sequentially).

Fig. S4 Absorption spectra of **4-MeB** in THF ($c = 1.2 \times 10^{-4} \text{ mol·L}^{-1}$) (solid line: **4-MeB** only; dash line: **4-MeB** with AgPF₆ added; dot line: **4-MeB** with AgPF₆ and Me₄NCl added sequentially).

Fig. S5 Absorption spectra of **4-MeB** in THF ($c = 1.2 \times 10^{-4} \text{ mol} \cdot L^{-1}$) (solid line: **4-MeB** only; dash line: **4-MeB** with AgPF₆ added; dot line: **4-MeB** with AgPF₆ and Et₃N added sequentially).

2. Theoretical calculation results

Fig. S6 HOMO (A), LUMO (B), LUMO+2 (C), and LUMO+3 (D) of **4-MeB** calculated at the MPW1PW91/3-21G level by Gaussian 03 while the distance between bromide anion and nitrogen atom of pyridyl ring is set as 5.40 Å.

Fig. S7 HOMO (A), LUMO (B), LUMO+2 (C), and LUMO+3 (D) of **4-MeB** calculated at the MPW1PW91/3-21G level by Gaussian 03 while the distance between bromide anion and nitrogen atom of pyridyl ring is set as 6.75 Å.

Fig. S8 HOMO (A), LUMO (B), LUMO+2 (C), and LUMO+3 (D) of **4-MeB** calculated at the MPW1PW91/3-21G level by Gaussian 03 while the distance between bromide anion and nitrogen atom of pyridyl ring is set as 8.10 Å.

Fig. S9 HOMO (A), LUMO (B), LUMO+2 (C), and LUMO+3 (D) of **4-MeB** calculated at the MPW1PW91/3-21G level by Gaussian 03 while the distance between bromide anion and nitrogen atom of pyridyl ring is set as 9.45 Å.

3. Fluorescence emission and excitation spectra

Fig. S10 Emission spectra of **4-MeB** in 1,4-dioxane upon excitation at 310 and 366 nm (A); excitation spectra of **4-MeB** in 1,4-dioxane at emission wavelength of 390 and 450 nm (B).

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Fig. S11 Emission spectra of 4-MeB in EtOAc upon excitation at 310 and 366 nm (A); excitation spectra of 4-MeB in EtOAc at emission wavelength of 400 and 450 nm (B).

Fig. S12 Emission spectra of **4-MeB** in THF upon excitation at 310 and 366 nm (A); excitation spectra of **4-MeB** in THF at emission wavelength of 390 and 450 nm (B).

Fig. S13 Emission spectra of 4-MeB in DCM upon excitation at 310 and 366 nm (A); excitation spectra of 4-MeB in DCM at emission wavelength of 410 and 450 nm (B).

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Fig. S14 Emission spectra of 4-MeB in methanol upon excitation at 310 and 366 nm (A); excitation spectra of 4-MeB in methanol at emission wavelength of 410 and 450 nm (B).

Fig. S15 Emission spectra of **4-MeB** in DMF upon excitation at 310 and 366 nm (A); excitation spectra of **4-MeB** in DMF at emission wavelength of 410 and 450 nm (B).

Fig. S16 Emission spectra of **4-MeB** in DMSO upon excitation at 310 and 366 nm (A); excitation spectra of **4-MeB** in DMSO at emission wavelength of 410 and 470 nm (B).

Fig. S17 Emission spectra of **4-MeB** in water upon excitation at 310 and 366 nm (A); excitation spectra of **4-MeB** in DMSO at emission wavelength of 410 and 450 nm (B).

4. Radiative decay curves

Fig. S18 Radiative decay curves of **4-MeB** in 1,4-dioxane $(2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ excited at 377 nm: (A) emission at 410 nm; (B) emission at 440 nm.

Fig. S19 Radiative decay curves of **4-MeB** in EtOAc ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 410 nm; (B) emission at 450 nm.

Fig. S20 Radiative decay curves of **4-MeB** in THF ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 410 nm; (B) emission at 450 nm; (C) emission at 490 nm.

Fig. S21 Radiative decay curves of **4-MeB** in DCM ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 410 nm; (B) emission at 440 nm.

Fig. S22 Radiative decay curves of **4-MeB** in methanol ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 410 nm; (B) emission at 450 nm; (C) emission at 490 nm.

Fig. S23 Radiative decay curves of **4-MeB** in DMF ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 400 nm; (B) emission at 450 nm.

Fig. S24 Radiative decay curves of **4-MeB** in acetonitrile ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 410 nm; (B) emission at 490 nm.

Fig. S25 Radiative decay curves of **4-MeB** in DMSO ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 410 nm; (B) emission at 460 nm.

Fig. S26 Radiative decay curves of **4-MeB** in water ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) excited at 377 nm: (A) emission at 400 nm; (B) emission at 450 nm.

5. Fluorescence lifetimes

2 /2000	<i>Lifetimes</i> / ns		Relative weights / %
$\lambda_{\rm em}/{\rm IIII}$	au 1	τ2	<i>τ</i> 1: <i>τ</i> 2
410	2.19	0.27	79.14:20.86
440	1.98	0.23	63.7:36.30

Table S1 The ratio of the fraction of longer-time component to that of the shorter-time in 1,4-dioxne.

Table S2 The	ratio of the fractior	of longer-time	component to th	nat of the shorter-tin	ne in EtOAc.
--------------	-----------------------	----------------	-----------------	------------------------	--------------

2 /22	<i>Lifetimes</i> / ns		Relative weights / %
Zem / IIII	<i>τ</i> 1	τ2	<i>τ</i> 1: <i>τ</i> 2
410	2.55	0.88	67.28:32.72
450	2.31	0.94	63.5:36.5

Table S3 The ratio of the fraction of longer-time component to that of the shorter-time in THF.

$\lambda_{ m em}$ /nm	<i>Lifetimes</i> / ns		Relative weights / %
	τ1	τ2	<i>τ</i> 1: <i>τ</i> 2
410	2.49	0.45	49.11:50.89
450	2.11	0.45	15.47:84.53
490	2.38	0.45	13.37:86.63

Table S4 The ratio of the fraction of longer-time component to that of the shorter-time in DCM.

1 /~~~	<i>Lifetimes</i> / ns		Relative weights / %
$\lambda_{\rm em}/\rm{IIII}$	<i>τ</i> 1	τ2	<i>τ</i> 1: <i>τ</i> 2
410	2.63	0.69	85.31:14.69
440	2.56	0.61	66.27:33.73

Table S5 The ratio of the fraction of longer-time component to that of the shorter-time in methanol.

$\lambda_{ m em}$ / nm ———	Lifetim	es / ns	Relative weights / %
	<i>τ</i> 1	τ2	τ1:τ2
410	0.46	0.20	63.14:36.86
450	0.67	0.24	35.25:64.75
490	0.71	0.23	32.03:67.97

2 /	Lifetim	<i>les</i> / ns	Relative weights / %
$\lambda_{\rm em}$ / IIII	<i>t</i> 1	τ2	<i>τ</i> 1: <i>τ</i> 2
400	3.32	1.29	55.12:44.88
450	3.41	0.99	84.57:15.43

Table S6 The ratio of the fraction of longer-time component to that of the shorter-time in DMF.

Table S7 The ratio of the fraction of longer-time component to that of the shorter-time in acetonitrile.

1 /mm	Lifetim	nes / ns	Relative weights / %
Zem / IIII	<i>τ</i> 1	τ2	<i>τ</i> 1: <i>τ</i> 2
410	2.72	0.36	72.07:27.93
490	0.80	0.21	25.08:74.92

Table S8 The ratio of the fraction of longer-time component to that of the shorter-time in DMSO.

2 /1000	<i>Lifetimes</i> / ns		Relative weights / %
$\lambda_{\rm em}/{\rm IIII}$	au 1	τ2	<i>τ</i> 1: <i>τ</i> 2
410	2.76	0.34	57.61:42.39
460	1.71	0.23	13.02:86.98

Table S9 The ratio of the fraction of longer-time component to that of the shorter-time in H₂O.

2 /2000	Lifetimes / ns		Relative weights / %
$\lambda_{\rm em}/\rm{IIII}$ –	71	<i>t</i> 2	<i>τ</i> 1: <i>τ</i> 2
400	2.85	0.40	86.90:13.10
450	1.36	0.27	7.01:92.99