SUPPLEMENTARY INFORMATION

	1					1		2			
		H2	Н3	H4α	Η4β	Н6	H8	H2'	Н5'	Н6'	Н9',13'
C (1)	δ	4.151	4.7	2.467	2.792	6.021	5.941	6.861	6.842	6.784	
	CIS	-0.068	а	0.106	а	-0.016	-0.094	-0.139	-0.172	-0.152	
EC (2)	δ	4.235	4.897	2.685	2.839	6.027	6.005	6.955	6.855	6.855	
	CIS	-0.029	-0.059	-0.037	0.047	-0.052	-0.111	-0.033	0.026	-0.034	
EGC	δ	4.218	4.831	2.678	2.827	6.023	6.005	6.547		6.547	
(3)	CIS	-0.012	-0.102	0.039	0.049	-0.041	-0.068	0.008		0.008	
EGCG	δ	5.030	5.516	2.841	2.972	6.074	6.042	6.496		6.496	6.899
(4)	CIS	-0.211	-0.214	0.019	0.246	-0.138	-0.136	0.223		0.223	0.109

Table 1. ¹H NMR chemical shifts of CH protons of catechins 1 - 4 (δ , ppm) and complexation induced shifts (CIS) when in complex with β -CD in D₂O at 298 K.

a. Not visible in the NMR spectrum.

Table 2. ¹H NMR chemical shifts of CH protons of β -CD alone (δ , ppm) and complexation induced shifts (CIS) when in complex with catechins in D₂O at 298 K.

0 CD		H-1	H-2	H-3	H-4	H-5	H-6
p-CD	δ	4.978	3.557	3.874	3.492	3.786	3.786
	δ'	4.941	3.529	3.806	3.481	3.593	3.677
C (1)	CIS	-0.037	-0.028	-0.068	-0.011	-0.193	-0.109
	δ'	4.948	3.529	3.808	3.493	3.692	3.717
EC (2)	CIS	-0.03	-0.028	-0.066	0.001	-0.094	-0.069
	δ'	4.954	3.535	3.824	3.497	3.703	3.712
EGC (3)	CIS	-0.024	-0.022	-0.05	0.005	-0.083	-0.074
	δ'	4.943	3.533	3.769	3.485	3.687	3.710
EGCG (4)	CIS	-0.035	-0.024	-0.105	-0.007	-0.099	-0.076

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

CD	H-3	H-5	H-4
H2	W ^c		
H3		М	
H4	М		
H6	S		
H8	S		
H2'	W		W
H5'	S ^a	М	S
H6'	S		M ^b

Table 3. ROE between C (1) (5 mM) and β -CD (5 mM) in D₂O at 298 K.

ROE between EC (2) (5 mM) and β -CD (5 mM) in D₂O at 298K.

CD	H-2	H-3	H-5	H-6
H4	Μ	Μ	Μ	Μ
H6		W	S	
H8	W	W	S	
H2'	W	S	Μ	W
Н5'	W	Μ	М	W
Н6'	W	М	М	W

ROE between	EGC ((3)) (5 mM) and	β-CD ((5 mM)) in D ₂ O	at 298K.
			•				`	, _	

CD	H-2	H-3	H-5	H-6
H2		Μ		
H3		S		
H4		М	W	
H6		Μ		
H8	W	S	М	Μ
H2',6'	W	S	М	W

^{a, b, c} S, strong; M, medium; and W, weak.

Figure 1. DOSY spectra of GTE showing the influence of viscosity on the diffusion coefficient. (A) Water extraction: a) concentrated sample, b) half concentration of sample a), c) 100 mg/mL, d) 50 mg/mL, e) 12 mg/mL (B) Methanol extraction: a) concentrated sample, b) 50 mg/mL, c) 25 mg/mL, d) 12 mg/mL, e) 6 mg/mL. The one-dimensional ¹H NMR spectra shown on the top of the DOSY spectra are those of sample e.