Electronic Supplementary Information (ESI)

Experimental procedure and characterization of products 5a-c, 6a-c, and 7a-d.

N-Butylfurfurylimine 5a. Freshly distilled furfural 1 (4.30 cm³, 52 mmol) is charged in a two necked round bottom flask under N₂; then anhydrous MgSO₄ (3.13 g, 26 mmol) is added, followed by butylamine (5.14 cm³, 52 mmol). The exothermic reaction is monitored by means of TLC and GC-MS; after 2 hours the conversion is complete. Imine 5a is obtained by distillation under reduced pressure (T_{eb} =60°C, p = 10 mbar) as a colourless liquid (7.7 g, 98%). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.94$ (t, ³J (H, H) = 7.2 Hz, 3H, N(CH₂)₃CH₃), 1.33-1.42 (m, 2H, N(CH₂)₂CH₂CH₃), 1.66-1.71 (m, 2H, NCH₂CH₂CH₂CH₃), 3.58 (t, ${}^{3}J$ (H, H) = 6.8 Hz, 2H, NCH₂(CH₂)₂CH₃), 6.47 (dd, ${}^{3}J$ (H, H) = 1.8 Hz, ${}^{3}J$ (H, H) = 3.2 Hz, 1H, 4-H furan), 6.72 (d, ${}^{3}J$ (H, H) = 3.2 Hz, 1H, 3-H furan), 7.50 (d, ${}^{3}J$ (H, H) = 1.8 Hz, 1H, 5-H furan), 8.08 ppm (s, 1H, N=CH); GC rt 17.4 min; MS (70 eV, EI): m/z 151 (20) [M⁺]; 122 (75) [M⁺- CH₃CH₂]; 108 (100) [M⁺- CH₃(CH₂)₂]; 94 (25) [M⁺-CH₃(CH₂)₃]; 81 (100) [M⁺- CH₃(CH₂)₃N]; 67 (6) [M⁺- CH₃(CH₂)₃ NCH]; 53 (20).

N-Octylfurfurylimine 5b. The imine is prepared from 1a and octylamine in 98% yield after distillation under reduced pressure $(T_{eb} = 95 \,^{\circ}C, p = 9 \, 10^{-2} \text{ mbar})$ with the same procedure of compound 5a. ¹H NMR (200 MHz, CDCl₃): $\delta = 0.88$ (t, ³*J* (H, H) = 6.2 Hz, 3H, N(CH₂)₇CH₃), 1.28-1.31 (m, 10H, N(CH₂)₂(CH₂)₅CH₃), 1.68-1.75 (m, 2H, NCH₂CH₂(CH₂)₅CH₃), 3.58 (t, ³*J* (H, H) = 7.4 Hz, 2H, NCH₂(CH₂)₆CH₃), 6.47 (dd, ³*J* (H, H) = 1.6 Hz, ³*J* (H, H) = 3.2 Hz, 1H, 4-H furan), 6.72 (d, ³*J* (H, H) = 3.2 Hz, 1H, 3-H furan), 7.51 (d, ³*J* (H, H) = 1.6 Hz, 1H, 5-H furan), 8.08 (s, 1H, N=CH); GC rt 18.2 min; MS (70 eV, EI): m/z 207 (5) [M⁺]; 192 (3) [M⁺- CH₃]; 178 (15) [M⁺- CH₃CH₂]; 164 (30) [M⁺- CH₃(CH₂)₂]; 150 (100) [M⁺- CH₃(CH₂)₃]; 136 (10) [M⁺- CH₃(CH₂)₄]; 122 (45) [M⁺- CH₃(CH₂)₅]; 108 (60) [M⁺- CH₃(CH₂)₆]; 94 (25) [M⁺- CH₃(CH₂)₇]; 80 (50) [M⁺- CH₃(CH₂)₇N]; 67 (5) [M⁺- CH₃(CH₂)₇NCH]; 53 (15).

N-Hexylfurfurylimine 5c. The imine is prepared from 1a hexylamine in 97% yield after distillation under reduced pressure $(T_{eb} = 90^{\circ}C, p = 1 \ 10^{-1} \text{ mbar})$ with the same procedure of compound 5a. ¹H NMR (200 MHz, CDCl₃): $\delta = 0.88$ (t, ³*J* (H, H) = 3.2 Hz, 3H, N(CH₂)₅CH₃), 1.23-1.38 (m, 6H, N(CH₂)₂(CH₂)₃CH₃), 1.65-1.75 (m, 2H, NCH₂CH₂(CH₂)₃CH₃), 3.56 (t, ³*J* (H, H) = 4.6 Hz, 2H, NCH₂(CH₂)₄CH₃), 6.46 (dd, ³*J* (H, H) = 1.2 Hz, ³*J* (H, H) = 2.2 Hz,

1H, 4-H furan), 6.71(d, ${}^{3}J$ (H, H) = 2.2 Hz, 1H, 3-H furan), 7.50 (d, ${}^{3}J$ (H, H) = 1.2 Hz, 1H, 5-H furan), 8.07 (s, 1H, N=C*H*); GC rt 15.6 min; MS (70 eV, EI): m/z 179 (5) [M⁺]; 164 (10) [M⁺- CH₃]; 150 (100) [M⁺- CH₃CH₂]; 136 (10) [M⁺- CH₃(CH₂)₂]; 122 (60) [M⁺- CH₃(CH₂)₃]; 108 (70) [M⁺- CH₃(CH₂)₄]; 94 (35) [M⁺- CH₃(CH₂)₅]; 80 (75) [M⁺- CH₃(CH₂)₅N]; 67 (5) [M⁺- CH₃(CH₂)₅ NCH]; 53 (15).

N-Butylfurfurylamine 6a. Freshly distilled imine 5a (7.55 g, 50 mmol) is charged in a two necked round bottom flask with Pd/C 10 wt % (750 mg) and connected to a rubber balloon filled with H₂ (1 atm); the reaction is stirred at room temperature and checked by means of TLC and GC-MS. After 24 hours Pd/C is filtered off on Celite and the amine is obtained by distillation under reduced pressure (T_{eb} =40°C, p = 8.10⁻² mbar) as a colourless liquid (7.5 g, 98%). ¹H NMR (200 MHz, CDCl₃): δ = 0.90 (t, ³*J* (H, H) = 7.0 Hz, 3H, N(CH₂)₃CH₃), 1.25-1.52 (m, 4H, NCH₂(CH₂)₂CH₃), 2.60 (t, ³*J* (H, H) = 6.6 Hz, 2H, NCH₂(CH₂)₂CH₃), 3.78 (s, 2H, NCH₂-furan), 6.17 (d, ³*J* (H, H) = 3.2 Hz, 1H, 3-H furan), 6.31 (dd, ³*J* (H, H) = 1.8 Hz, ³*J* (H, H) = 3.2 Hz, 1H, 4-H furan), 7.33 (d, ³*J* (H, H) = 1.8 Hz, 1H, 5-H furan); GC rt 17.1 min; MS (70 eV, EI): m/z 153 (15) [M⁺]); 110 (30) [M⁺- CH₃(CH₂)₂]; 96 (15) [M⁺- CH₃(CH₂)₃]; 81 (100) [M⁺- CH₃(CH₂)₃ NH]; 53 (15).

N-Octylfurfurylamine 6b. The amine is prepared in 98% yield as a pale yellow oil after distillation under reduced pressure (T_{eb} =90°C, p = 7.10⁻² mbar) starting from imine **5b** as described for compound **6a**. ¹H NMR (400 MHz, CDCl₃): δ = 0.87 (t, ³*J* (H, H) = 6.4 Hz, 3H, N(CH₂)₇CH₃), 1.26-1.27 (m, 10H, N(CH₂)₂(CH₂)₅CH₃), 1.44-1.50 (m, 2H, NCH₂CH₂(CH₂)₅CH₃), 2.59 (t, ³*J* (H, H) = 6.8 Hz, 2H, NCH₂(CH₂)₆CH₃), 3.76 (s, 2H, NCH₂-furan), 6.15 (d, ³*J* (H, H) = 3.2 Hz, 1H, 3-H furan), 6.30 (dd, ³*J* (H, H) = 2.2 Hz, ³*J* (H, H) = 3.2 Hz, 1H, 4-H furan), 7.35 (d, ³*J* (H, H) = 2.2 Hz, 1H, 5-H furan); GC rt 17.1 min; MS (70 eV, EI): m/z 209 (25) [M⁺]; 180 (5) [M⁺-CH₃CH₂]; 166 (5) [M⁺-CH₃(CH₂)₂]; 152 (5) [M⁺-CH₃(CH₂)₃]; 110 (100) [M⁺- CH₃(CH₂)₆]; 96 (20) [M⁺-CH₃(CH₂)₇]; 81 (100) [M⁺-CH₃(CH₂)₇]; 53 (15).

N-Hexylfurfurylamine 6c. The amine is prepared in 95% yield as a pale yellow oil after distillation under reduced pressure ($T_{eb} = 70^{\circ}C$, $p = 7.10^{-2}$ mbar) starting from imine 5c as described for compound 6a. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (t, ³*J* (H, H) = 6.2 Hz, 3H, N(CH₂)₅CH₃), 1.23-1.27 (m, 6H, N(CH₂)₂(CH₂)₃CH₃), 1.47-1.52 (m, 2H, NCH₂CH₂(CH₂)₃CH₃), 2.61 (t, ³*J* (H, H) = 7.2 Hz, 2H, NCH₂(CH₂)₄CH₃), 3.77 (s, 2H, NCH₂-furan), 6.19 (d, ³*J* (H, H) =

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

3.0 Hz, 1H, 3-H furan), 6.32 (dd, ${}^{3}J$ (H, H) = 2.2 Hz, ${}^{3}J$ (H, H) = 3.0 Hz, 1H, 4-H furan), 7.34 (d, ${}^{3}J$ (H, H) = 2.2 Hz, 1H, 5-H furan); GC rt 15.4 min; MS (70 eV, EI): m/z 181 (5) [M⁺]; 110 (40) [M⁺- CH₃(CH₂)₄]; 96 (10) [M⁺- CH₃(CH₂)₅]; 81 (100) [M⁺- CH₃(CH₂)₅] NH]; 53 (10).

N,N-dibutylfurfurylamine 7a. Freshly distilled amine 6a (1.53 g, 10 mmol), K₂CO₃ (1.38 g, 10 mmol) and bromobutane (1.07 cm³, 10 mmol) are charged in a two necked round bottom flask and stirred at room temperature for 24 hours. The reaction is monitored by GC-MS, when the conversion is completed, K₂CO₃ is filtered off and the product is purified by distillation under reduced pressure (T_{eb} = 70°C, p = 8.10⁻² mbar) giving a pale yellow oil (1.24 g, 80%). ¹H NMR (400 MHz, CDCl₃): δ = 0.90 (m, 6H, 2 × CH₃(CH₂)₃N), 1.27-1.33 (m, 4H, 2 × CH₃CH₂(CH₂)₂N), 1.43-1.49 (m, 4H, 2 × CH₃CH₂CH₂CH₂N), 2.42 (m, 4H, 2 × CH₃(CH₂)₂CH₂N), 3.64 (s, 2H, NCH₂-furan), 6.15 (d, ³J (H, H) = 3.0 Hz, 1H, 3-H furan), 6.31 (dd, ³J (H, H) = 1.8 Hz, ³J (H, H) = 3.0 Hz, 1H, 4-H furan), 7.36 (d, ³J (H, H) = 1.8 Hz, 1H, 5-H furan); GC rt 20.6 min; MS (70 eV, EI): m/z 209 (10) [M⁺]; 166 (45) [M⁺- CH₃(CH₂)₂]; 81 (100) [M⁺- CH₃(CH₂)₃N CH₃(CH₂)₃]; 53 (10).

N-butyl-*N*-dodecylfurfurylamine 7b is obtained with the same procedure of 7a starting from 6a and bromododecane,70% yield after flash chromatography (cyclohexane/AcOEt 8/2). ¹H NMR (200 MHz, CDCl₃): $\delta = 0.86-0.94$ (m, 6H, $CH_3(CH_2)_{11}N$, $CH_3(CH_2)_3N$), 1.26-1.35 (m, 20H, $CH_3(CH_2)_9(CH_2)_2N$, $CH_3CH_2(CH_2)_2N$), 1.50-1.52 (m, 4H, $CH_3(CH_2)_9CH_2CH_2N$, $CH_3CH_2CH_2CH_2N$), 2.44-2.49 (m, 4H, $CH_3(CH_2)_{10}CH_2N$, $CH_3(CH_2)_3CH_2N$), 3.72 (s, 2H, NCH_2 furan), 6.22 (d, ³*J* (H, H) = 3.2 Hz, 1H, 3-H furan), 6.33 (dd, ³*J* (H, H) = 2.2 Hz, ³*J* (H, H) = 3.2 Hz, 1H, 4-H furan), 7.38 (d, ³*J* (H, H) = 2.2 Hz, 1H, 5-H furan); GC rt 26.5 min; MS (70 eV, EI): m/z 321 (10) [M⁺]; 278 (40) [M⁺- CH₃(CH₂)₂]; 166 (65) [M⁺- CH₃(CH₂)₁₀]; 81 (100) [M⁺- CH₃(CH₂)₁₁ N CH₃(CH₂)₃].

N-Butyl-*N*-octylfurfurylamine 7c. The amine 7c is prepared from amine **6b** with the same procedure described for compound **7a**, obtained as a pale yellow oil in 90% yield after distillation under reduced pressure ($T_{eb} = 100^{\circ}C$, $p = 9 \ 10^{-2} \ mbar$). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (t, ³*J* (H, H) = 6.4 Hz, 3H, CH₃(CH₂)₇N), 0.93 (t, ³*J* (H, H) = 7.2 Hz, 3H, N(CH₂)₃CH₃), 1.24-1.36 (m, 12H, CH₃(CH₂)₅(CH₂)₂N, CH₃CH₂(CH₂)₂N), 1.75-1.79 (m, 4H, CH₃(CH₂)₅CH₂CH₂N, CH₃CH₂CH₂CH₂N), 2.72-2.77 (m, 4H, CH₃(CH₂)₆CH₂N, CH₃(CH₂)₂CH₂N), 4.08 (s, 2H, NCH₂-furan), 6.40 (dd, ³*J* (H, H) = 1.8 Hz, ³*J* (H, H) = 3.2 Hz, 1H, 3-H furan), 6.52 (d, ³*J* (H, H) = 3.2 Hz, 1H, 4-H furan), 7.45 (d, ³*J* (H, H) = 1.8 Hz, 1H, 5-H furan); GC rt 20.3 min; MS (70 eV, EI): m/z 265 (10) [M⁺; 222 (30) [M⁺- CH₃(CH₂)₂]; 166 (50) [M⁺- CH₃(CH₂)₆]; 81 (100) [M⁺-CH₃(CH₂)₃N CH₃(CH₂)₇], 53 (5).

N-Dodecyl-*N*-octyl-furfuryl amine 7d. The amine is prepared from octyl-furfuryl amine 6b as described for compound 7b, in a 70% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85-0.88$ (m, 6H, $CH_3(CH_2)_{11}N_2$ $CH_3(CH_2)_7N),$ 1.24-1.28 (m, 28H, CH₃(CH₂)₉(CH₂)₂N, CH₃(CH₂)₅(CH₂)₂N), 1.71-1.73 (m, 4H, CH₃(CH₂)₉CH₂CH₂N, CH₃ (CH₂)₅CH₂CH₂N), 2.67 (m, 4H, CH₃(CH₂)₁₀CH₂N, CH₃(CH₂)₆CH₂N), 4.00 (s, 2H, NCH₂-furan), 6.38 (dd, ${}^{3}J$ (H, H) = 1.6 Hz, ${}^{3}J$ (H, H) = 3.2 Hz, 1H, 4-H furan), 6.38 (d, ${}^{3}J$ (H, H) = 3.2 Hz, 1H, 3-H furan), 7.43 (d, ${}^{3}J$ (H, H) = 1.6 Hz, 1H, 5-H furan); GC rt 27.3; MS (70 eV, EI): m/z 377 (10) [M⁺]; 278 (75) [M⁺- CH₃(CH₂)₆]; 264 (10) [M⁺- CH₃(CH₂)₇]; 222 (80) [M⁺- CH₃(CH₂)₁₀]; 208 (10) [M⁺- CH₃(CH₂)₁₁]; 81 (100) [M⁺-CH₃(CH₂)₁₁ N CH₃(CH₂)₇].

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Figure 1. Relationship between quaternary ammonium salts concentration in water and number of active individuals of *Daphnia magna*, after a 48 h exposure. Points: observed values (mean of two replicates); lines: logistic model fitted to the observed data.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

Fig. 2

