Nematic to smectic texture transformation in MBBA by

in-situ synthesis of silver nanoparticles

P. K. Sudhadevi Antharjanam* and Edamana Prasad*

Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600 036, India; Fax: +91-44-2257-4200, Phone: +91-44-2257-4232 Email: <u>santharjanam@rediffmail.com</u>; <u>pre@iitm.ac.in</u>

Supporting information

List of contents

UV-Visible thin film absorption spectra of MBBA-Ag composite prepared using 1, 3 and 80 mol% of AgNO ₃ after heating to isotropic temperature and cooling	S2
Uv-Visible absorption spectrum of a mixture of MBBA, 4-butylaniline and 4-methoxybenzaldehyde in thin film	S2
SEM image of MBBA-Ag composite prepared using 1 mol% of AgNO ₃ after heating to isotropic temperature and cooling	S3
SEM image of MBBA-Ag composite prepared using 3 mol% of AgNO ₃ after heating to isotropic temperature and cooling	S3
SEM image of MBBA-Ag composite prepared using 5 mol% of AgNO ₃ after heating to isotropic temperature and cooling	S4
OPM images of MBBA-Ag composite prepared using 1 mol% of AgNO ₃	S4
OPM pictures of MBBA-Ag composite prepared using 3 mol% of AgNO ₃	S5
NMR spectrum of MBBA-Ag composite after 3 days	S5
Fluorescence spectrum of 4-butylaniline-Ag composite in thin film	S6
Fluorescence spectrum of a mixture of MBBA, 4-butylaniline and 4-methoxybenzaldehyde in thin film	S6
FT-IR spectrum of MBBA-Ag NP conjugate containing 80 mol% of AgNO ₃ with respect to MBBA	S7
FT-IR spectrum of MBBA	S8

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S1: Uv-visible absorption spectra of silver nanoparticles prepared in MBBA using a) 1 mol %, b) 3 mol % and c) 80 mol % of AgNO₃

Figure S2: Uv-Visible absorption spectrum of a mixture of MBBA, 4-butylaniline and 4-methoxybenzaldehyde in thin film.

Figure S3: SEM image of silver nanoparticles prepared in MBBA using 1 mol % of AgNO₃

Figure S4: SEM image of silver nanoparticles prepared in MBBA using 3 mol % of AgNO₃

Figure S5: SEM image of silver nanoparticles prepared in MBBA using 5 mol % of AgNO_3

Figure S6: OPM pictures of MBBA-Ag composite prepared using 1 mol% a) before heating b) after heating and cooling. The nematic texture is lost on the second cycle of heating and cooling, followed by the appearance of rectangular blocks of MBBA-Ag composites.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S7: OPM pictures of MBBA-Ag composite prepared using 3 mol% of AgNO₃: a) before heating b) isotropic state and c) after heating and cooling.

Figure S8: NMR spectrum of MBBA-Ag composite prepared using 80 mol% of AgNO₃, after 3 days

Figure S9: Fluorescence spectrum of 4-butylaniline-Ag composite in thin film. The Excitation wavelength was 420 nm. No emission is observed.

Figure S10: Fluorescence spectrum of a mixture of MBBA, 4-butylaniline and 4-methoxy benzaldehyde in thin film. Excitation wavelength was 420 nm. No emission was observed.

Figure S11: FT-IR spectrum of MBBA-Ag NP conjugate containing 80 mol% of AgNO₃ with respect to MBBA. The -C=N peak of MBBA originally appeared at 1625 cm⁻¹ (see figure below) is shifted to 1600 cm⁻¹. Amines stretching vibrational frequencies are also shifted to lower frequencies (from normal values of 3400-3500 to 3244-3140 cm⁻¹). The carbonyl of aldehyde should be overlapped with MBBA imine, as formation of aldehyde was evident from NMR spectra of the MBBA-Ag NP conjugate.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S12: FT-IR spectrum of MBBA