# Supplementary Material (ESI) for New Journal of Chemistry # This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010 data_global _journal_name_full 'New J.Chem.' _journal_coden_Cambridge 0440 _publ_contact_author_name 'Della Vedova, Carlos' _publ_contact_author_email carlosdv@quimica.unlp.edu.ar _publ_section_title ; Methoxycarbonyl Trifluoromethyl Disulfide, CH3OC(O)SSCF3: Synthesis, Structure and Conformational Properties ; loop_ _publ_author_name S.Torrico-Vallejos M.Erben R.Boese 'C.Della Vedova' # Attachment '- ocoss_m_last.cif' data_ocoss_m _database_code_depnum_ccdc_archive 'CCDC 734324' #TrackingRef '- ocoss_m_last.cif' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C3 H3 F3 O2 S2' _chemical_formula_weight 192.17 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 6.4698(5) _cell_length_b 9.0499(8) _cell_length_c 12.5700(11) _cell_angle_alpha 97.219(6) _cell_angle_beta 93.131(5) _cell_angle_gamma 96.888(5) _cell_volume 723.07(11) _cell_formula_units_Z 4 _cell_measurement_temperature 190(2) _cell_measurement_reflns_used 9901 _cell_measurement_theta_min 2.28 _cell_measurement_theta_max 27.03 _exptl_crystal_description cylindric _exptl_crystal_colour colorless _exptl_crystal_size_max 0.3 _exptl_crystal_size_mid 0.3 _exptl_crystal_size_min 0.3 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.765 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 384 _exptl_absorpt_coefficient_mu 0.730 _exptl_absorpt_correction_type 'multi scan' _exptl_absorpt_correction_T_min 0.81 _exptl_absorpt_correction_T_max 0.97 _exptl_absorpt_process_details ; BRUKER AXS SMART APEX 2 Vers. 3.0-2009 R.H. Blessing, Acta Cryst. (1995) A51 33-38 ; _exptl_special_details ; The crystallization was performed on the diffractometer at a temperature of 190 K with a miniature zone melting procedure using focused infrared-laser-radiation according to: R. Boese, M.Nussbaumer, "In Situ crystallisation Techniques", in: "Organic Crystal Chemistry", Ed. D.W. Jones, Oxford University Press, Oxford,England, (1994) 20-37 Data reduction with three independent crystals after matrix determination with cell_now ; _diffrn_ambient_temperature 190(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ; Siemens SMART three axis goniometer with APEX II area detector system ; _diffrn_measurement_method ; Data collection strategy APEX 2 / COSMO with chi = 0 ; _diffrn_detector_area_resol_mean 512 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 7540 _diffrn_reflns_av_R_equivalents 0.0000 _diffrn_reflns_av_sigmaI/netI 0.0227 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 1.64 _diffrn_reflns_theta_max 27.90 _reflns_number_total 7550 _reflns_number_gt 5325 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_cell_refinement 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_data_reduction 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_structure_solution 'BRUKER AXS SMART APEX 2 Vers. 3.0-2009' _computing_structure_refinement 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_molecular_graphics 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _computing_publication_material 'BRUKER AXS SHELXTL (c) 2008 / Vers. 2008/4' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The low coverage resulted from the orientation of the cylindric crystal and the chosen scan mode, both due to the in situ crystal growing technique. Any other mounting of the crystal / scan mode would lead to a melting of the crystal. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1365P)^2^+0.2533P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment ; Riding model on idealized geometrics with the 1.2 fold (1.5 fold for methyl groups) isotropic displacement parameters of the equivalent Uij of the corresponding carbon atom ; _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.004(5) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 2644 _refine_ls_number_parameters 184 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0886 _refine_ls_R_factor_gt 0.0630 _refine_ls_wR_factor_ref 0.2210 _refine_ls_wR_factor_gt 0.1926 _refine_ls_goodness_of_fit_ref 1.043 _refine_ls_restrained_S_all 1.043 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group S1_1 S 0.20602(15) 0.22298(8) 0.62483(6) 0.0452(3) Uani 1 1 d . . . S2_1 S -0.10582(15) 0.21590(9) 0.62553(6) 0.0466(3) Uani 1 1 d . . . O1_1 O -0.0714(4) 0.1557(3) 0.41305(16) 0.0521(7) Uani 1 1 d . . . O2_1 O -0.3898(5) 0.1670(2) 0.47708(16) 0.0483(7) Uani 1 1 d . . . C1_1 C 0.2792(7) 0.4204(4) 0.6213(3) 0.0519(10) Uani 1 1 d . . . C2_1 C -0.1845(7) 0.1741(3) 0.4840(2) 0.0402(9) Uani 1 1 d . . . C3_1 C -0.4910(7) 0.1387(4) 0.3691(3) 0.0567(10) Uani 1 1 d . . . H3A_1 H -0.4354 0.2133 0.3262 0.085 Uiso 1 1 d R . . H3B_1 H -0.6382 0.1426 0.3744 0.085 Uiso 1 1 d R . . H3C_1 H -0.4692 0.0407 0.3358 0.085 Uiso 1 1 d R . . F1_1 F 0.2174(5) 0.5058(3) 0.7044(2) 0.0942(10) Uani 1 1 d . . . F2_1 F 0.2057(4) 0.4670(3) 0.5336(2) 0.0912(9) Uani 1 1 d . . . F3_1 F 0.4854(4) 0.4463(3) 0.6253(2) 0.0728(7) Uani 1 1 d . . . S1_2 S 0.37993(15) 0.83303(8) 0.10038(6) 0.0449(3) Uani 1 1 d . . . S2_2 S 0.68588(15) 0.81980(9) 0.08798(6) 0.0453(3) Uani 1 1 d . . . O1_2 O 0.5732(4) 0.8117(2) -0.12189(16) 0.0483(6) Uani 1 1 d . . . O2_2 O 0.9106(5) 0.8061(3) -0.06784(17) 0.0539(7) Uani 1 1 d . . . C1_2 C 0.2783(6) 0.6365(3) 0.0866(3) 0.0463(9) Uani 1 1 d . . . C2_2 C 0.7092(7) 0.8114(3) -0.0553(2) 0.0419(9) Uani 1 1 d . . . C3_2 C 0.9717(7) 0.7960(5) -0.1780(3) 0.0633(11) Uani 1 1 d . . . H3A_2 H 0.8860 0.7131 -0.2208 0.095 Uiso 1 1 d R . . H3B_2 H 1.1157 0.7793 -0.1787 0.095 Uiso 1 1 d R . . H3C_2 H 0.9545 0.8873 -0.2077 0.095 Uiso 1 1 d R . . F1_2 F 0.0792(4) 0.6279(2) 0.11139(18) 0.0638(6) Uani 1 1 d . . . F2_2 F 0.2823(4) 0.5673(2) -0.01289(17) 0.0678(7) Uani 1 1 d . . . F3_2 F 0.3759(4) 0.5597(2) 0.1512(2) 0.0716(7) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 S1_1 0.0389(8) 0.0515(4) 0.0472(4) 0.0104(3) -0.0008(4) 0.0112(4) S2_1 0.0398(8) 0.0666(5) 0.0325(4) 0.0051(3) 0.0069(3) 0.0035(4) O1_1 0.046(2) 0.0733(14) 0.0356(11) -0.0015(9) 0.0077(10) 0.0084(12) O2_1 0.034(2) 0.0657(14) 0.0427(11) 0.0039(9) 0.0013(10) 0.0026(11) C1_1 0.034(3) 0.0556(18) 0.067(2) 0.0110(15) -0.0008(17) 0.0071(16) C2_1 0.045(3) 0.0410(14) 0.0342(14) 0.0050(10) 0.0039(13) 0.0024(13) C3_1 0.054(3) 0.065(2) 0.0471(18) 0.0051(14) -0.0081(16) -0.0004(17) F1_1 0.083(3) 0.0658(14) 0.127(2) -0.0227(14) 0.0300(17) 0.0082(13) F2_1 0.078(2) 0.0791(15) 0.120(2) 0.0580(15) -0.0276(16) -0.0085(13) F3_1 0.044(2) 0.0786(14) 0.0911(17) 0.0062(12) -0.0007(12) -0.0030(12) S1_2 0.0429(8) 0.0420(4) 0.0500(4) 0.0002(3) 0.0087(4) 0.0097(3) S2_2 0.0384(8) 0.0611(5) 0.0343(4) 0.0041(3) -0.0002(3) 0.0013(4) O1_2 0.046(2) 0.0617(13) 0.0368(11) 0.0082(9) -0.0046(11) 0.0073(11) O2_2 0.036(2) 0.0837(17) 0.0443(12) 0.0140(10) 0.0067(11) 0.0100(12) C1_2 0.037(3) 0.0483(16) 0.0523(18) 0.0024(13) 0.0044(16) 0.0029(14) C2_2 0.049(3) 0.0394(14) 0.0375(15) 0.0069(10) 0.0031(15) 0.0046(13) C3_2 0.055(3) 0.084(2) 0.0520(19) 0.0078(17) 0.0203(18) 0.006(2) F1_2 0.0321(19) 0.0767(13) 0.0803(15) 0.0067(10) 0.0102(11) -0.0007(10) F2_2 0.066(2) 0.0608(11) 0.0671(13) -0.0178(9) 0.0114(11) -0.0041(10) F3_2 0.063(2) 0.0632(13) 0.0944(16) 0.0347(11) -0.0034(13) 0.0097(11) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag S1_1 C1_1 1.799(3) . ? S1_1 S2_1 2.0114(15) . ? S2_1 C2_1 1.804(3) . ? O1_1 C2_1 1.192(4) . ? O2_1 C2_1 1.320(4) . ? O2_1 C3_1 1.453(4) . ? C1_1 F2_1 1.314(4) . ? C1_1 F3_1 1.324(5) . ? C1_1 F1_1 1.329(5) . ? S1_2 C1_2 1.804(3) . ? S1_2 S2_2 2.0107(14) . ? S2_2 C2_2 1.808(3) . ? O1_2 C2_2 1.182(4) . ? O2_2 C2_2 1.327(5) . ? O2_2 C3_2 1.456(4) . ? C1_2 F3_2 1.316(4) . ? C1_2 F2_2 1.329(4) . ? C1_2 F1_2 1.337(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1_1 S1_1 S2_1 100.22(15) . . ? C2_1 S2_1 S1_1 101.61(14) . . ? C2_1 O2_1 C3_1 116.1(3) . . ? F2_1 C1_1 F3_1 107.9(3) . . ? F2_1 C1_1 F1_1 107.2(3) . . ? F3_1 C1_1 F1_1 107.3(3) . . ? F2_1 C1_1 S1_1 113.2(3) . . ? F3_1 C1_1 S1_1 108.1(2) . . ? F1_1 C1_1 S1_1 112.8(3) . . ? O1_1 C2_1 O2_1 128.3(3) . . ? O1_1 C2_1 S2_1 126.1(3) . . ? O2_1 C2_1 S2_1 105.6(2) . . ? C1_2 S1_2 S2_2 100.69(14) . . ? C2_2 S2_2 S1_2 102.33(15) . . ? C2_2 O2_2 C3_2 116.0(3) . . ? F3_2 C1_2 F2_2 107.2(3) . . ? F3_2 C1_2 F1_2 107.4(3) . . ? F2_2 C1_2 F1_2 107.9(3) . . ? F3_2 C1_2 S1_2 113.9(3) . . ? F2_2 C1_2 S1_2 112.9(2) . . ? F1_2 C1_2 S1_2 107.3(2) . . ? O1_2 C2_2 O2_2 128.4(3) . . ? O1_2 C2_2 S2_2 126.8(3) . . ? O2_2 C2_2 S2_2 104.8(2) . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C1_1 S1_1 S2_1 C2_1 92.72(15) . . . . ? S2_1 S1_1 C1_1 F2_1 -63.3(3) . . . . ? S2_1 S1_1 C1_1 F3_1 177.2(2) . . . . ? S2_1 S1_1 C1_1 F1_1 58.7(3) . . . . ? C3_1 O2_1 C2_1 O1_1 -2.5(4) . . . . ? C3_1 O2_1 C2_1 S2_1 178.2(2) . . . . ? S1_1 S2_1 C2_1 O1_1 0.6(3) . . . . ? S1_1 S2_1 C2_1 O2_1 179.86(16) . . . . ? C1_2 S1_2 S2_2 C2_2 89.32(14) . . . . ? S2_2 S1_2 C1_2 F3_2 51.0(3) . . . . ? S2_2 S1_2 C1_2 F2_2 -71.5(3) . . . . ? S2_2 S1_2 C1_2 F1_2 169.71(19) . . . . ? C3_2 O2_2 C2_2 O1_2 -1.6(4) . . . . ? C3_2 O2_2 C2_2 S2_2 179.0(2) . . . . ? S1_2 S2_2 C2_2 O1_2 -0.9(3) . . . . ? S1_2 S2_2 C2_2 O2_2 178.54(16) . . . . ? _diffrn_measured_fraction_theta_max 0.765 _diffrn_reflns_theta_full 27.90 _diffrn_measured_fraction_theta_full 0.765 _refine_diff_density_max 0.543 _refine_diff_density_min -0.353 _refine_diff_density_rms 0.098 _vrf_PLAT021_ocoss_m ; PROBLEM: Ratio Unique / Expected Reflections too High ... 2.18 RESPONSE: An exception to this requirement may occur if data from a non-merohedrally twinned crystal is employed, as this may result in more than one entry in the reflection file for a given set of h,k,l indices (e.g. data read into SHELXL with HKLF 5). As a result, more reflections may be used in the refinement than the apparent number of unique reflections. In this case the data stemmed from three non merohedrally twinned crystals. ; _vrf_PLAT029_ocoss_m ; PROBLEM: _diffrn_measured_fraction_theta_full Low ....... 0.75 RESPONSE: The compounds are liquids at RT. The single crystals are formed by an in-situ zone melting process inside a quartz capillary using an IR-laser. The experimental setup does only allow for a omega scan of the single crystal. This limits the completeness to 75% to 95% depending on the crystal system. ;