The Effect of Different Ligand Substituents on the Chemistry of a Zinc/Pyrazole Anion Host

Jonathan Day, Katie E. R. Marriott, Colin A. Kilner and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT. E-mail: m.a.halcrow@leeds.ac.uk

Electronic Supplementary Information

Figure S1 View of the asymmetric unit in the crystal structure of $[ZnCl_2(Hpz^{Tn})_2]$.

Table S1 Selected bond lengths and angles in the crystal structure of $[ZnCl_2(Hpz^{Tn})_2]$.

Figure S2 View of the hydrogen-bonded dimer in the crystal structure of [ZnCl₂(Hpz^{Cy})₂].

Table S2 Selected bond lengths and angles in the crystal structure of $[ZnCl_2(Hpz^{Cy})_2]$.

Table S3 Metric parameters for hydrogen bonds in the $[ZnCl_2(Hpz^R)_2]$ structures.

Figure S3 Partial packing diagram of $[ZnCl_2(Hpz^{Cy})_2]$, showing the association of the dimers in the crystal through the C–H...Cl interactions.

Figure S4 Space-filling views of the guest-binding cavities in $[ZnCl(Hpz'^{Bu})_3]Cl$ and $[ZnCl(Hpz^{Ph})_3]Cl$.

Figure S5 Space-filling views of the guest-binding cavities in $[ZnCl(Hpz^{IBu})_3]NO_3$, containing one nitrate guest; $[ZnCl(Hpz^{Cy})_3]NO_3$, containing two nitrate ions; and the monomeric unit in $[ZnBr(Hpz^{Cy})_3]NO_3 \cdot H_2O$, containing a nitrate ion and water molecule.

Figure S6 Space-filling and cutaway diagrams of the hydrogen-bonded dimer in $[ZnCl(Hpz^{Cy})_3]NO_3$.

Figure S7 Partial space-filling and cutaway packing diagrams of [ZnBr(Hpz^{Cy})₃]NO₃·H₂O.

Figure S8 View of the hydrogen-bonded dimer in the crystal structure of $[ZnCl(Hpz^{Cy})_3]ClO_4$.

Table S4 Selected bond lengths and angles in the crystal structure of [ZnCl(Hpz^{Cy})₃]ClO₄.

Figure S9 Space-filling view of the hydrogen-bonded dimer in the crystal structure of $[ZnCl(Hpz^{Cy})_3]ClO_4$.

Table S5 Metric parameters for hydrogen bonds in the $[ZnY(Hpz^R)_3]X$ structures.

Figure S1 View of the asymmetric unit in the crystal structure of $[ZnCl_2(Hpz^{Tn})_2]$. Only the major orientations of the disordered thienyl groups C(9A)-C(13A) and C(9B)-C(13B) are shown. All H atoms not involved in hydrogen bonding have been omitted for clarity, and displacement ellipsoids are at the 50% probability level. Colour code: C, white; H, grey; Cl, yellow; N, blue; S, purple; Zn, green.

Table S1 Selected bond lengths and angles in the crystal structure of [ZnCl ₂ (Hpz ^{Tn}) ₂] (Å, °).				
Zn(1A)-Cl(2A)	2.3506(11)	Zn(1B)-Cl(2B)	2.3469(11)	
Zn(1A)-Cl(3A)	2.2322(11)	Zn(1B)-Cl(3B)	2.2279(12)	
Zn(1A)-N(4A)	2.029(3)	Zn(1B)-N(4B)	2.021(4)	
Zn(1A)-N(14A)	2.038(3)	Zn(1B)-N(14B)	2.026(3)	
Cl(2A)– $Zn(1A)$ – $Cl(3A)$	117.68(4)	Cl(2B)– $Zn(1B)$ – $Cl(3B)$	114.26(4)	
Cl(2A)-Zn(1A)-N(4A)	99.49(10)	Cl(2B)– $Zn(1B)$ – $N(4B)$	102.10(10)	
Cl(2A)– $Zn(1A)$ – $N(14A)$	101.19(10)	Cl(2B)-Zn(1B)-N(14B)	105.60(10)	
Cl(3A)-Zn(1A)-N(4A)	107.33(10)	Cl(3B)– $Zn(1B)$ – $N(4B)$	107.41(10)	
Cl(3A)-Zn(1A)-N(14A)	105.68(10)	Cl(3B)-Zn(1B)-N(14B)	107.03(10)	
N(4A)-Zn(1A)-N(14A)	126.25(13)	N(4B)-Zn(1B)-N(14B)	120.73(14)	

Figure S2 View of the hydrogen-bonded dimer in the crystal structure of $[ZnCl_2(Hpz^{Cy})_2]$. All H atoms not involved in hydrogen bonding have been omitted for clarity, and displacement ellipsoids are at the 50% probability level. Symmetry code: (iv) -x, 1-y, 1-z. Colour code: C, white; H, grey; Cl, yellow; N, blue; Zn, green.

Table S2 Selected bond lengths and angles in the crystal structure of [ZnCl₂(Hpz^{Cy})₂] (Å, °).

	•ijbitai bir attaite of [===e
Zn(1)-Cl(2)	2.3101(4)
Zn(1)-Cl(3)	2.2469(4)
Zn(1)-N(4)	2.0378(10)
Zn(1)-N(15)	2.0334(10)
Cl(2)-Zn(1)-Cl(3)	116.141(14)
Cl(2)-Zn(1)-N(4)	106.89(3)
Cl(2)-Zn(1)-N(15)	105.64(3)
Cl(3)-Zn(1)-N(4)	104.50(3)
Cl(3)-Zn(1)-N(15)	107.38(3)
N(4)-Zn(1)-N(15)	116.75(4)

Table S3 Metric parameters for hydrogen bonds in the $[ZnCl_2(Hpz^R)_2]$ structures (Å, °). Symmetry codes: (i) 1–*x*, 1–*y*, 1–*z*; (ii) –*x*, –¹/₂+*y*, ³/₂–*z*; (iii) 1–*x*, ¹/₂+*y*, ³/₂–*z*; (iv) –*x*, 1–*y*, 1–*z*; (v) –*x*–¹/₂, ¹/₂+*y*, ³/₂–*z*.

<u> </u>	D-H (D = N, C)	HCl	DCl	D-HCl
[ZnCl ₂ (Hpz ^{Ph}) ₂]·CHCl ₃				
$N(5)-H(5)Cl(2^{i})$	0.88	2.42	3.2569(17)	160.2
$N(16)-H(16)Cl(2^{i})$	0.88	2.48	3.3292(17)	161.1
C(26)–H(26)Cl(3)	1.00	2.55	3.534(3)	167.8
$[ZnCl_2(Hpz^{Tn})_2]$				
N(5A)–H(5A)Cl(2B)	0.88	2.34	3.216(3)	170.4
N(15A)–H(15A)Cl(2B)	0.88	2.37	3.230(4)	167.1
N(5B)–H(5B)Cl(2A)	0.88	2.38	3.247(3)	169.1
N(15B)–H(15B)Cl(2A)	0.88	2.37	3.240(3)	168.2
$C(7A)-H(7A)Cl(3B^{ii})$	0.95	2.78	3.662(4)	155.1
$C(7B)-H(7B)Cl(3A^{iii})$	0.95	2.75	3.684(4)	167.5
$[ZnCl_2(Hpz^{Cy})_2]$				
$N(5)-H(5)Cl(2^{iv})$	0.88	2.32	3.1811(10)	164.5
$N(16)-H(16)Cl(2^{iv})$	0.88	2.45	3.2755(11)	156.4
$C(7)-H(7)Cl(3^{v})$	0.95	2.80	3.6773(14)	154.4

Figure S3 Partial packing diagram of $[ZnCl_2(Hpz^{Cy})_2]$, showing the association of the dimers in the crystal through the C(7)–H(7)...Cl(3^v) interaction (Table S3). The view is along the crystallographic (101) plane with *b* vertical, and displacement ellipsoids are at the 50% probability level. Colour code: C, white; H, grey; Cl, yellow; N, blue; Zn, green.

Figure S4 Comparative space-filling views of the guest-binding cavities in $[ZnCl(Hpz^{tBu})_3]Cl$ (top) and $[ZnCl(Hpz^{Ph})_3]Cl$ (bottom). The view in both cases is parallel to the Zn–Cl bond. Colour code: C, white; H, grey; Cl, yellow; N, blue; Zn, green.

Data for $[ZnCl(Hpz^{tBu})_3]Cl$ are taken from ref. 15 of the main paper.

Figure S5 Comparative space-filling views of the guest-binding cavities in $[ZnCl(Hpz^{'Bu})_3]NO_3$, containing one nitrate guest (top); half the dimeric capsule in $[ZnCl(Hpz^{Cy})_3]NO_3$, containing two nitrate ions (middle); and the monomeric unit in $[ZnBr(Hpz^{Cy})_3]NO_3$. H₂O, containing a nitrate ion and water molecule (bottom). The views are parallel to the Zn–X (X⁻ = Cl⁻ or Br⁻) bond, and only one orientation of the disordered residues in the structures is shown. Colour code: C, white; H, grey; Cl or Br, yellow; N{pyrazole}, pale blue; N{nitrate}, dark blue; O, red; Zn, green.

Data for $[ZnCl(Hpz^{tBu})_3]NO_3$ are taken from ref. 15 of the main paper.

Figure S6 Space-filling (top) and cutaway (bottom) diagrams of the hydrogen-bonded dimer in $[ZnCl(Hpz^{Cy})_3]NO_3$, showing the pair of nitrate ions encapsulated by two $[ZnCl(Hpz^{Cy})_3]^+$ cations. Both views are the same as Fig. 3 of the main paper. Colour code: C, white; H, grey; Cl, yellow; N{pyrazole}, pale blue; N{nitrate}, dark blue; O, red; Zn, green.

Figure S7 Partial space-filling (top) and cutaway (bottom) packing diagrams of $[ZnBr(Hpz^{Cy})_3]NO_3 \cdot H_2O$, showing the $[NO_3 \cdot H_2O]_n^{n-}$ chains sheathed by the $[ZnBr(Hpz^{Cy})_3]^+$ cations. Both views are the same as Fig. 5 of the main paper. Colour code: C, white; H, grey; Br, yellow; N{pyrazole}, pale blue; N{nitrate}, dark blue; O, red; Zn, green.

Figure S8 View of the hydrogen-bonded dimer in the crystal structure of $[ZnCl(Hpz^{Cy})_3]ClO_4$. All H atoms not involved in hydrogen bonding have been omitted for clarity, and displacement ellipsoids are at the 50% probability level. Symmetry code: (x) –*x*, *y*, $\frac{1}{2}$ –*z*. Colour code: C, white; H, grey; Cl, yellow; N, blue; O, red; Zn, green.

Table S4 Selected bond lengths and angles in the crystal structure of [ZnCl(Hpz ^{Cy}) ₃]ClO ₄ (Å	, °	').
---	-----	-----

54 Deletica Doll	a longing and angles in the eryst	ar structure of [Zhei(Hpz)3]er
	Zn(1)-Cl(2)	2.3075(9)
	Zn(1)-N(3)	2.031(2)
	Zn(1)-N(14)	2.020(2)
	Zn(1)–N(25)	2.051(2)
	Cl(2)-Zn(1)-N(3)	111.12(6)
	Cl(2)-Zn(1)-N(14)	103.39(7)
	Cl(2)-Zn(1)-N(25)	103.61(6)
	N(3)-Zn(1)-N(14)	122.78(8)
	N(3)-Zn(1)-N(25)	102.60(9)
	N(14)-Zn(1)-N(25)	111.98(9)

Figure S9 Space-filling view of the hydrogen-bonded dimer in the crystal structure of $[ZnCl(Hpz^{Cy})_3]ClO_4$. The view is the same as in Fig. S6, and Fig. 6 of the main paper. Colour code: C, white; H, grey; Cl, yellow; N, blue; O, red; Zn, green.

	D-H (D = N, O)	HA (A = 0, Cl)	DA	D-HA
$[ZnCl(Hpz^{Ph})_3]Cl$				
$N(4) - H(4) \dots Cl(36)$	0.88	2.37	3.2058(18)	158.4
N(15)–H(15)Cl(36)	0.88	2.34	3.1428(16)	152.2
N(26)–H(26)Cl(36)	0.88	2.29	3.1332(15)	161.5
[ZnCl(Hpz ^{Cy}) ₃]NO ₃				
N(4)-H(4)O(37)	0.88	1.99	2.834(3)	160.7
N(15)–H(15)O(38)	0.88	1.97	2.813(3)	160.7
N(26)–H(26)O(39 ^A)	0.88	2.04	2.913(3)	172.4
[ZnBr(Hpz ^{Cy}) ₃]NO ₃ ·H ₂ O				
N(4)–H(4)O(27)	0.88	2.01	2.874(3)	166.5
N(15)-H(15)O(24)	0.88	2.07	2.865(5)	149.4
$O(27)-H(27A)O(25^{viii})^{a}$	0.99	2.55	3.321(4)	134.3
$O(27)-H(27A)O(26^{viii})^{a}$	0.99	1.91	2.887(4)	169.2
$O(27)-H(27B)O(24)^{a}$	0.99	2.31	2.822(4)	111.2
$O(27)-H(27B)O(25)^{a}$	0.99	1.76	2.739(4)	171.2
[ZnCl(Hpz ^{Cy}) ₃]ClO ₄				
$N(4) - H(4) \dots Cl(2^{x})$	0.88	2.44	3.298(2)	165.3
N(15)-H(15)O(38)	0.88	2.08	2.919(3)	159.8
N(26)-H(26)O(37)	0.88	2.02	2.830(3)	152.9

Table S5 Metric parameters for hydrogen bonds in the $[ZnY(Hpz^R)_3]X$ structures (Å, °). Symmetry codes: (vi) 1-x, -y, -z; (viii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{3}{2}-z$; (x) $-x, y, \frac{1}{2}-z$.

^aThe long bonds O(27)–H(27A) and O(27)–H(27B) are an artefact of the refinement procedure, and metric parameters involving these H atoms should be treated with caution. See the main paper for more details.