#### SUPPORTING INFORMATION

# Preparation of Benzylphosphonates via a Palladium(0)-Catalyzed Cross-coupling of H-Phosphonate Diesters with Benzyl Halides. Synthetic and Mechanistic Studies

Gaston Lavén, Marcin Kalek, Martina Jezowska, and Jacek Stawinski\*

**Purification of benzylphosphonates 1-13:** Silica gel chromatography, using **A.** pentane : EtOAc 1:1 $\rightarrow$ 0:1 or **B.** CH<sub>2</sub>Cl<sub>2</sub>:MeOH 10:0 $\rightarrow$ 9:1; or extraction **C.** Residue was partitioned between EtOAc (50 mL) and aq. 1 M NaOH (50 mL) and the organic phase extracted twice with aq. 1 M NaOH (2×50 mL). Combined aqueous layers were acidified with 6 M HCl, and extracted 3 times with CH<sub>2</sub>Cl<sub>2</sub> (3×50 mL). The combined organic layers were washed with water, dried with Na<sub>2</sub>SO<sub>4</sub>, and evaporated. Purity of the isolated compounds >98% (<sup>1</sup>H NMR spectroscopy)

**Diethyl benzylphosphonate (1).** Purified with **A**; yellow oil, 203 mg yield (89 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  7.34-7.25 (m, 5H), 4.03 (m, 4H), 3.17 (d, J = 21.5Hz, 2H), 1.26 (t, J = 7.0 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  131.8 (d, <sup>2</sup> $J_{P-C} = 8.8$ Hz), 129.9 (d, <sup>3</sup> $J_{P-C} = 6.7$  Hz), 128.7 (d, <sup>4</sup> $J_{P-C} = 2.9$  Hz), 127.0 (d, <sup>5</sup> $J_{P-C} = 3.7$  Hz), 62.3 (d, <sup>2</sup> $J_{P-C} = 6.6$  Hz), 33.9 (d, <sup>1</sup> $J_{P-C} = 137.9$  Hz), 16.5 (d, <sup>3</sup> $J_{P-C} = 6.2$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  26.4; HRMS: m/z 251.0818 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>17</sub>NaO<sub>3</sub>P<sup>+</sup> calcd. 251.0808).

**Diethyl (4-methylbenzyl)phosphonate (2).** Purified with **A**; yellow oil, 233 mg yield (88 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  7.20-7.09 (m, 4H), 4.01 (m, 4H), 3.11 (d, J = 21.4 Hz, 2H), 2.32 (d, J = 2.3 Hz, 3H), 1.24 (t, J = 7.0 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  136.5 (d,  $J_{P-C}$  = 3.7 Hz), 129.7 (d,  $J_{P-C}$  = 6.6 Hz), 129.3 (d,  $J_{P-C}$  = 3.1 Hz),

128.5 (d,  $J_{P-C} = 9.0$  Hz), 62.1 (d,  $J_{P-C} = 6.7$  Hz), 33.4 (d,  $J_{P-C} = 138.5$  Hz), 21.2, 16.5 (d,  $J_{P-C} = 6.0$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  26.7; HRMS: m/z 265.0975 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>17</sub>NaO<sub>3</sub>P<sup>+</sup> calcd. 265.0964).

**Diethyl (4-methoxybenzyl)phosphonate (3).** Purified with **A**; yellow oil, 225 mg yield (87 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  7.21 (m, 2H), 6.84 (m, 2H), 4.03 (m, 4H), 3.79 (s, 3H), 3.08 (d, J = 21.6 Hz, 2H), 1.24 (t, J = 7.0 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  158.7 (d,  $J_{P-C} = 3.6$  Hz), 130.8 (d,  $J_{P-C} = 6.5$  Hz), 123.5 (d,  $J_{P-C} = 9.2$  Hz), 114.1 (d,  $J_{P-C} = 3.0$  Hz), 62.2 (d,  $J_{P-C} = 6.6$  Hz), 55.3, 32.9 (d,  $J_{P-C} = 139.5$  Hz), 16.5 (d,  $J_{P-C} = 6.0$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  26.8; HRMS: m/z 281.0925 ([M+Na]<sup>+</sup>, C<sub>12</sub>H<sub>19</sub>NaO<sub>4</sub>P<sup>+</sup> calcd. 281.0913).

**Diethyl (4-fluorobenzyl)phosphonate (4).** Purified with **A**; yellow oil, 236 mg yield (96 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  7.28 (m, 2H), 7.02 (m, 2H), 4.03 (m, 4H), 3.12 (d, J = 21.4 Hz, 2H), 1.26 (t, J = 7.1 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.9 (dd, <sup>5</sup> $J_{P-C} = 4.8$  Hz, <sup>1</sup> $J_{F-C} = 245.4$  Hz), 131.2 (dd, <sup>3</sup> $J_{P-C} = 6.6$  Hz, <sup>3</sup> $J_{F-C} = 8.1$  Hz), 127.4 (dd, <sup>2</sup> $J_{P-C} = 9.0$  Hz, <sup>4</sup> $J_{F-C} = 3.4$  Hz), 115.4 (dd, <sup>4</sup> $J_{P-C} = 3.0$  Hz, <sup>2</sup> $J_{F-C} = 21.5$  Hz), 62.1 (d, <sup>2</sup> $J_{P-C} = 6.6$  Hz), 32.9 (d, <sup>1</sup> $J_{P-C} = 139.4$  Hz), 16.4 (d, <sup>3</sup> $J_{P-C} = 6.0$  Hz). <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  26.1 (d, <sup>6</sup> $J_{P-F} = 5.9$  Hz); HRMS: *m*/*z* 269.0727 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>16</sub>FNaO<sub>3</sub>P<sup>+</sup> calcd. 269.0713);

**Diethyl (4-chlorobenzyl)phosphonate (5).** Purified with **A**; yellow oil, 234 mg yield (90 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  7.31-7.21 (m, 4H), 4.07-3.97 (m, 4H), 3.11 (d, J = 21.7 Hz), 1.25 (t, J = 7.1 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  133.1 (d, <sup>5</sup> $J_{P-C} = 4.1$  Hz), 131.3 (d, <sup>3</sup> $J_{P-C} = 6.7$  Hz), 130.5 (d, <sup>2</sup> $J_{P-C} = 9.1$  Hz), 128.9 (d, <sup>4</sup> $J_{P-C} = 3.1$  Hz), 62.4 (d, <sup>2</sup> $J_{P-C} = 6.8$  Hz), 33.4 (d, <sup>1</sup> $J_{P-C} = 138.7$  Hz), 16.6 (d, <sup>3</sup> $J_{P-C} = 5.9$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  25.7; HRMS: m/z 285.0418 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>16</sub>FNaO<sub>3</sub>P<sup>+</sup> calcd. 285.0418);

**Diethyl (4-bromobenzyl)phosphonate (6).** Purified with **A**; yellow oil, 249 mg yield (86 %). <sup>1</sup>H NMR (400 MHz, CDCl3): δ 7.45-7.40 (m, 2H), 7.19-7.14 (m, 2H), 4.06-

3.97 (m, 4H), 3.08 (d, J = 21.7 Hz, 2H), 1.24 (t, J = 7.1 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  131.8 (d, <sup>4</sup> $J_{P-C} = 3.1$  Hz), 131.6 (d, <sup>3</sup> $J_{P-C} = 6.6$  Hz), 131.0 (d, <sup>2</sup> $J_{P-C} = 9.1$  Hz), 121.1 (d, <sup>5</sup> $J_{P-C} = 4.7$  Hz), 62.3 (d, <sup>2</sup> $J_{P-C} = 6.8$  Hz), 33.4 (d, <sup>1</sup> $J_{P-C} = 138.6$  Hz), 16.5 (d, <sup>3</sup> $J_{P-C} = 6.1$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  25.4; HRMS: m/z 328.9915 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>16</sub>FNaO<sub>3</sub>P<sup>+</sup> calcd. 328.9913);

**Diethyl (4-vinylbenzyl)phosphonate (7).** Purified with A; colorless oil, 207 mg yield (92 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  7.37-7.33 (m, 2H), 7.27-7.24 (m, 2H), 6.69 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.72 (d, J = 17.6 Hz, 1H), 5.22 (d, J = 10.8 Hz, 1H), 4.06-3.96 (m, 4H), 3.14 (d, J = 21.8 Hz, 2H), 1.24 (t, J = 7.0 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  136.5 (d, <sup>6</sup> $J_{P-C} = 2.0$  Hz), 136.3 (d, <sup>5</sup> $J_{P-C} = 3.9$  Hz), 131.3 (d, <sup>2</sup> $J_{P-C} = 9.5$  Hz), 130.0 (d, <sup>3</sup> $J_{P-C} = 6.6$  Hz), 126.5 (d, <sup>4</sup> $J_{P-C} = 3.2$  Hz), 113.8 (d, <sup>7</sup> $J_{P-C} = 1.5$  Hz), 62.2 (d, <sup>2</sup> $J_{P-C} = 6.7$  Hz), 33.7 (d, <sup>1</sup> $J_{P-C} = 138.3$  Hz), 16.7 (d, <sup>3</sup> $J_{P-C} = 6.1$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  26.2; HRMS: m/z 277.0944 ([M+Na]<sup>+</sup>, C<sub>12</sub>H<sub>19</sub>NaO<sub>6</sub>P<sup>+</sup> calcd. 277.0964);

**Diethyl (3-pyridylmethyl)phosphonate (8).** Purified with **A**; yellow oil, 217 mg yield (92 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  8.51-8.47 (m, 2H), 7.66 (m, 1H), 7.24 (m, 1H), 4.07-4.03 (m, 4H), 3.11 (d, J = 21.7 Hz, 2H), 1.24 (t, J = 7.0 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.7 (d, <sup>3</sup> $J_{P-C} = 7.5$  Hz), 148.4 (d, <sup>5</sup> $J_{P-C} = 3.7$  Hz), 137.2 (d, <sup>3</sup> $J_{P-C} = 5.8$  Hz), 128.0 (d, <sup>2</sup> $J_{P-C} = 9.1$  Hz), 123.5 (d, <sup>4</sup> $J_{P-C} = 2.9$  Hz), 62.4 (d, <sup>2</sup> $J_{P-C} = 6.9$  Hz), 31.1 (d, <sup>1</sup> $J_{P-C} = 139.6$  Hz), 16.5 (d, <sup>3</sup> $J_{P-C} = 5.9$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  25.1; HRMS: m/z 252.0751 ([M+Na]<sup>+</sup>, C<sub>10</sub>H<sub>16</sub>NNaO<sub>3</sub>P<sup>+</sup> calcd. 252.0760);

**Diethyl (4-carboxybenzyl)phosphonate (9).** Purified with **C**; white solid, 271 mg yield (99 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  8.03 (d, H<sub>Ar</sub>, J = 8.0 Hz, 2H), 7.40 (dd, H<sub>Ar</sub>, J = 8.3, 2.4 Hz, 2H), 4.12-4.02 (m, 4H), 3.26 (d,  $J_{P-C}$  = 22.3 Hz, 2H), 1.27 (t, J = 7.0 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  170.5, 137.6 (<sup>2</sup> $J_{P-C}$  = 9.3 Hz), 130.5 (<sup>4</sup> $J_{P-C}$ )

$$_{\rm C}$$
 = 3.0 Hz), 130.0 ( ${}^{3}J_{\rm P-C}$  = 6.5 Hz), 128.7 ( ${}^{5}J_{\rm P-C}$  = 3.6 Hz), 62.7 ( ${}^{2}J_{\rm P-C}$  = 6.9 Hz), 34.1 ( ${}^{1}J_{\rm P-C}$  = 137.8 Hz), 16.5 ( ${}^{3}J_{\rm P-C}$  = 6.0 Hz);

<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  25.6; HRMS: *m/z* 295.0689 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>16</sub>FNaO<sub>3</sub>P<sup>+</sup> calcd. 295.0706);

Ethyl 5-diethylphosphonomethylfuran-2-carboxylate (10). Purified with A; yellow oil, 262 mg yield (99 %). <sup>1</sup>H NMR (400 MHz, CDCl3): δ 7.10 (d, J = 3.4 Hz, 1H), 6.39 (dd, J = 3.8, 3.4 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 4.15-4.06 (m, 4H), 3.29 (d, J= 21.4 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 158.7, 150.7 (d, <sup>2</sup> $J_{P-C} = 8.0$  Hz), 144.3 (d, <sup>4</sup> $J_{P-C} = 3.3$  Hz), 119.2 (d, <sup>4</sup> $J_{P-C} = 3.2$  Hz), 110.7 (d, <sup>3</sup> $J_{P-C} = 6.4$  Hz), 62.7 (d, <sup>2</sup> $J_{P-C} = 6.6$  Hz), 61.0, 27.2 (d, <sup>1</sup> $J_{P-C} =$ 143.1 Hz), 16.4 (d, <sup>3</sup> $J_{P-C} = 6.0$  Hz), 14.4; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 21.6; HRMS: m/z 313.0809 ([M+Na]<sup>+</sup>, C<sub>12</sub>H<sub>19</sub>NaO<sub>6</sub>P<sup>+</sup> calcd. 313.0811);

Ethyl *n*-pentyl benzylphosphonate – mixture of diastereoisomers (11). Purified with **A**; yellow oil, 238 mg yield (88 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.34-7.25 (m, 5H), 4.05-3.87 (m, 4H), 3.17 (d, J = 21.5 Hz, 2H), 1.61-1.54 (m, 2H), 1.31-1.24 (m, 4H), 1.23 (t, J = 7.0 Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  131.8 (d, <sup>2</sup> $J_{P-C} = 9.2$  Hz), 129.9 (d, <sup>3</sup> $J_{P-C} = 6.7$  Hz), 128.7 (d, <sup>4</sup> $J_{P-C} = 2.9$  Hz), 127.0 (d, <sup>5</sup> $J_{P-C} = 3.7$  Hz), 66.2 (d, <sup>2</sup> $J_{P-C} = 7.0$  Hz) 62.3 (d, <sup>2</sup> $J_{P-C} = 6.6$  Hz), 33.9 (d, <sup>1</sup> $J_{P-C} = 137.9$  Hz), 30.3 (d, <sup>3</sup> $J_{P-C} = 6.1$  Hz), 27.7, 22.3, 16.5 (d, <sup>3</sup> $J_{P-C} = 6.2$  Hz), 14.1; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  26.4; HRMS: *m*/*z* 293.1269 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>17</sub>NaO<sub>3</sub>P<sup>+</sup> calcd. 293.1277);

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl ethyl benzylphosphonate – mixture of diastereoisomers (12). Purified with A; yellow oil, 233 mg yield (74 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.32-7.22 (m, 5H), 4.18 (m, 1H), 3.70 and 3.68 (2×t, *J* = 5.6 Hz, 1H), 3.185 and 3.179 (2×d, *J* = 21.8 Hz, 2H), 1.39 (s, 3H), 1.33 (s, 3H), 1.24 (t, *J* =

7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  131.42 and 131.38 (2×d,  $J_{P-C} = 9.1$  Hz), 129.94 and 129.92 (2×d,  $J_{P-C} = 6.7$  Hz), 128.7 (d,  $J_{P-C} = 3.0$  Hz), 127.1 (d,  $J_{P-C} = 3.5$ Hz), 109.9, 74.48 and 74.45 (d,  $J_{P-C} = 6.8$  Hz), 66.2 (d,  $J_{P-C} = 4.8$  Hz), 66.04 and 66.01 (2×d,  $J_{P-C} = 6.8$  Hz), 62.55 and 62.50 (2×d,  $J_{P-C} = 6.6$  Hz), 33.77 and 33.75 (2×d,  $J_{P-C} = 138.3$  Hz), 26.9, 25.41, 25.40, 16.5 (d,  $J_{P-C} = 6.0$  Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  27.03 and 27.01; HRMS: m/z 337.1167 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>17</sub>NaO<sub>3</sub>P<sup>+</sup> calcd. 337.1175);

**Cholesteryl ethyl benzylphosphonate** – **mixture of diastereoisomers (13).** Purified with **A**; white amorphous solid, 500 mg yield (88 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.34-7.20 (m, 5H), 5.34 and 5.26 (2×m, 1H), 4.16 (m, 1H), 4.03-3.94 (m, 2H), 3.14 (d, *J* = 21.7 Hz, 2H), 2.40-0.80 (m, 43H), 0.66 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  139.7 (d, *J*<sub>P-C</sub> = 3.7 Hz), 132.0 (d, *J*<sub>P-C</sub> = 9.1 Hz), 129.98 and 129.96 (2×d, *J*<sub>P-C</sub> = 6.7 Hz), 128.60 and 128.58 (2×d, *J*<sub>P-C</sub> = 2.4 Hz), 126.94 and 126.91 (2×d, *J*<sub>P-C</sub> = 3.6 Hz), 122.93 (d, *J*<sub>P-C</sub> = 4.0 Hz), 76.85 and 76.79 (2×d, *J*<sub>P-C</sub> = 6.8 Hz), 62.05 and 61.98 (2×d, *J*<sub>P-C</sub> = 7.2 Hz), 56.8, 56.3, 50.1, 42.43, 40.6 (d, *J*<sub>P-C</sub> = 3.3 Hz), 40.1 (d, *J*<sub>P-C</sub> = 4.8 Hz), 39.8, 39.6, 37.08, 37.04, 36.51, 36.49, 36.3, 35.9, 35.1, 33.8, 32.00, 31.96, 31.06, 30.26, 30.23, 29.89, 29.84, 28.35, 28.14, 24.4, 24.0, 23.0, 22.7, 21.2, 19.4, 18.8, 16.53, 16.47, 12.0; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  25.52 and 25.48; HRMS: *m*/z 591.3948 ([M+Na]<sup>+</sup>, C<sub>36</sub>H<sub>57</sub>NaO<sub>3</sub>P<sup>+</sup> calcd. 591.3938);

5'-*O*-(*tert*-Butyldiphenylsilyl)thymidin-3'-yl 3'-*O*-(dimethoxytrityl)thymidin-5'-yl benzylphosphonate – mixture of diastereoisomers (14). Off-white amorphous solid, 511 mg (88 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  9.54, 9.39, 9.35 (3×s, H3<sub>a</sub>, H3<sub>b</sub>, 2H), 7.72-6.80 (m, H<sub>Ar</sub> + H6<sub>a</sub>, H6<sub>b</sub>, 30H), 6.48-6.26 (m, H1'<sub>a</sub>, H1'<sub>b</sub>, 2H), 5.02, 4.92 (2×t, H3'<sub>a</sub>, *J* = 6.4 Hz, 1H), 4.24-3.44 (m, H3'<sub>b</sub>, H4'<sub>a</sub>, H4'<sub>b</sub>, H5'<sub>a</sub>, H5''<sub>a</sub>, H5''<sub>b</sub>, H5''<sub>b</sub>, 2×OCH<sub>3</sub>, 13H), 3.28-3.00 (m, PCH<sub>2</sub>, 2H), 2.47-1.99 (m, H2'<sub>a</sub>, H2''<sub>a</sub>, H2''<sub>b</sub>, 3H), 1.92,

1.90 (2×s, H5<sub>b</sub>, 3H), 1.56, 1.54 (2×s, H5<sub>a</sub>, 3H), 1.54 (m, H2"<sub>b</sub>, 1H), 1.08, 1.06 (2×s, tB-Si, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.0, 163.9, 158.9, 150.6, 150.5, 145.0, 144.9, 136.18, 136.11, 136.05, 136.03, 135.9, 135.6, 135.4, 135.3, 134.9,133.0, 132.9, 132.8, 132.5, 132.13, 132.08, 130.33, 130.26, 130.16, 129.8, 129.75, 129.72, 129.12, 128.89, 128.87, 128.41, 128.33, 128.18, 128.10, 128.06, 127.53, 127.32, 125.4, 113.5, 113.4, 111.70, 111.64, 111.4, 111.3, 111.2, 87.6, 87.5, 87.2, 86.1, 85.9, 85.53, 85.47, 85.3, 84.8, 84.4, 84.3, 84.2, 77.6 (*J*<sub>P-C</sub> = 6.4 Hz), 77.5 (*J*<sub>P-C</sub> = 6.3 Hz), 74.1, 73.8, 72.3, 65.6, 64.3, 63.8, 60.5, 55.37, 55.34, 41.1, 39.6, 39.2, 39.1, 33.9 (*J*<sub>P-C</sub> = 138 Hz), 27.1, 21.5, 21.1, 19.4, 14.3, 12.7, 12.2, 12.05, 11.98; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  28.2 and 27.1; HRMS: *m/z* 1183.4261 ([M+Na]<sup>+</sup>, C<sub>64</sub>H<sub>69</sub>N<sub>4</sub>NaO<sub>13</sub>PSi<sup>+</sup> calcd. 1183.4260);

## 5'-O-(*tert*-Butyldiphenylsilyl)thymidin-3'-yl N<sup>4</sup>-benzoyl-3'-O-

(dimethoxytrityl)deoxycytidine-5'-yl benzylphosphonate mixture of diastereoisomers (15). Off-white amorphous solid, 531 mg (85 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.97, 8.91 (2×bs, H3<sub>a</sub> and C4NH<sub>b</sub>, 2H), 8.08-6.79 (m, H<sub>Ar</sub>, H6<sub>a</sub>, H5<sub>b</sub>, H6<sub>b</sub>, 36H), 6.47-6.26 (m, H1'<sub>a</sub>, H1'<sub>b</sub>, 2H), 4.97 and 4.90 (2×t, H3'<sub>a</sub>, J = 6.0 and 6.2 Hz, 1H), 4.17 (m, H2'<sub>b</sub>, 1H), 4.07-3.62 (m, 10H), 3.51-3.41 (m, H5'<sub>a</sub>, 2H), 3.14-2.95 (m, PCH<sub>2</sub>, 2H), 2.47 (m, H4'<sub>b</sub>, 1H), 2.37-2.05 (2×m, H2'<sub>a</sub>, 2H), 1.54, 1.49 (2×s, H5, 3H), 1.49 (m, H2"<sub>b</sub>, 1H), 1.09, 1.04 (2×s, tB-Si, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 163.7, 162.4, 158.9, 150.3, 144.94, 144.91, 136.14, 136.12, 136.06, 135.6, 135.4, 135.34, 135.28, 135.08, 135.00, 133.2, 132.9, 132.8, 132.1, 130.36, 130.33, 130.29, 130.24, 129.83, 129.76, 129.0, 128.96, 128.92, 128.43, 128.39, 128.2, 128.1, 127.8, 127.59, 127.56, 127.36, 113.6, 113.4, 111.6, 111.4, 111.24, 88.0, 87.66, 86.28, 86.26, 85.53, 84.47, 85.19, 85.13, 85.03, 84.96, 84.82, 84.6, 84.2, 77.8 (d,  $J_{P-C} = 6.0$  Hz), 77.5 (d,  $J_{P-C} = 6.3$  Hz), 74.2, 74.1, 72.4, 65.31 (d,  $J_{P-C} = 6.3$  Hz), 65.19 (d,  $J_{P-C} = 6.4$ Hz), 64.3, 63.83, 63.81, 62.5, 55.40, 55.37, 41.9, 40.9, 39.7, 39.23, 39.17, 34.06 (d,

 $J_{P-C} = 136.4 \text{ Hz}$ ), 33.99 (d,  $J_{P-C} = 138.2 \text{ Hz}$ ), 27.1, 19.47, 19.44, 12.2, 12.1, 12.0; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  28.0 and 27.5; HRMS: m/z 1272.4514 ([M+Na]<sup>+</sup>, C<sub>70</sub>H<sub>72</sub>N<sub>5</sub>NaO<sub>13</sub>PSi<sup>+</sup> calcd. 1272.4526);

## 5'-O-(*tert*-Butyldiphenylsilyl)thymidin-3'-yl N<sup>2</sup>-*iso*-butyryl-3'-O-

(dimethoxytrityl)deoxyguanosine-5'-yl benzylphosphonate – mixture of diastereoisomers (16). Off-white amorphous solid, 502 mg (80 %). <sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  12.10, 12.05 (1H, 2×s, C2NH<sub>b</sub>), 10.52, 10.49 (2×s, H3<sub>b</sub>, 1H), 9.08, 8.98 (2×s, H3<sub>a</sub>, 1H) 7.72-6.75 (m, H<sub>Ar</sub> + H6<sub>a</sub>, H8<sub>b</sub>, 30H), 6.43-6.07 (2×dd + m, H1'<sub>a</sub>, H1'<sub>b</sub>, 2H), 5.03, 4.78 (2×m, H3'<sub>a</sub>, 1H), 4.28-3.44 (m, H3'<sub>b</sub>, H4'<sub>a</sub>, H4'<sub>b</sub>, H5'<sub>a</sub>, H5"<sub>a</sub>, H5'<sub>b</sub>, H5''<sub>b</sub>, 2×OCH<sub>3</sub>, 13H), 3.19-2.95 (m, PCH<sub>2</sub>, 2H), 2.70-1.65 (m, H2'<sub>a</sub>, H2''<sub>a</sub>, H2'<sub>b</sub>, H2"<sub>b</sub>, (CH<sub>3</sub>)<sub>2</sub>CH, 5H), 1.59, 1.50 (s, CH<sub>3a</sub>, 3H), 1.22, 1.18, 1.09, 1.07 (4×d,  $(CH_3)_2$ CH, J = 6.4-7.0 Hz, 6H), 1.06, 1.00 (2×s, tB-Si, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): *δ* 179.6, 179.5, 178.6, 171.1, 163.5, 163.4, 158.8, 155.6, 155.4, 155.0, 150.3, 150.2, 147.7, 147.6, 147.5, 147.3, 146.8, 145.0, 144.8, 144.5, 139.7, 139.6, 136.2, 136.1, 136.0, 135.8, 135.7, 135.43, 135.40, 135.1, 135.0, 134.7, 132.4, 132.0, 130.3, 130.2, 130.1, 130.0, 129.5, 129.4, 128.79, 128.72, 128.2, 128.0, 127.9, 127.52, 127.47, 127.4, 127.3, 127.24, 127.17, 127.1, 123.3, 122.9, 113.4 (arom. + C2<sub>a</sub>, C2<sub>b</sub>, C4<sub>a</sub>, C4<sub>b</sub>, C5<sub>b</sub>, C6<sub>a</sub>, C6<sub>b</sub>, C8<sub>b</sub>, C=O), 111.6, 111.5 (C5<sub>a</sub>), 87.7, 87.6, 87.5, 87.3, 87.1, 87.0, 85.8, 85.5, 84.5, 84.4, 84.3 (C1'a, C1'b, C4'a, C4'b, Ar<sub>3</sub>C), 78.2, 77.0 (d, C3'a, J = 7.0 Hz, 74.4, 74.3 (C3'<sub>b</sub>), 66.1, 66.0, 63.8, 63.6 (C5'<sub>a</sub>, C5'<sub>b</sub>), 55.3, 55.2 (CH<sub>3</sub>O), 39.3, 39.1, 37.8, 37.4, 36.3, 35.7, 35.6 (C2'<sub>a</sub>, C2'<sub>b</sub>, (CH<sub>3</sub>)<sub>2</sub>CH), 33.4, 33.0 (2×d, PCH<sub>2</sub>, J = 139 Hz), 26.9 ((CH<sub>3</sub>)<sub>3</sub>CSi), 19.4, 19.3, 19.2, 19.0, 18.9, 18.7, 18.3 ((CH<sub>3</sub>)<sub>2</sub>CH, (CH<sub>3</sub>)<sub>3</sub>CSi), 12.0, 11.8 (CH<sub>3a</sub>); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 29.5 and 26.7; HRMS: m/z 1278.4752 ([M+Na]<sup>+</sup>, C<sub>68</sub>H<sub>74</sub>N<sub>7</sub>NaO<sub>13</sub>PSi<sup>+</sup> calcd. 1278.4744);

N<sup>6</sup>-benzoyl-3'-O-5'-O-(tert-Butyldiphenylsilyl)thymidin-3'-yl benzylphosphonate (dimethoxytrityl)deoxyadenosin-5'-vl mixture \_ of diastereoisomers (17). Off-white amorphous solid, 516 mg (81 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 9.93, 9.76, 9.62, 9.38 (4×s, H2<sub>b</sub>, C6NH<sub>b</sub>, 2H), 8.80, 8.77 (2×s, H3<sub>a</sub>, 1H): 8.25-6.81 (m, H<sub>Ar</sub>, H6<sub>a</sub>, H8<sub>b</sub>, 35H), 6.52-6.17 (m, H1'<sub>a</sub>, H1'<sub>b</sub>, 2H), 4.93-4.82 (m, H3'a, 1H), 4.45-4.35 (m, H3'b, 1H), 4.13 (m, H4'b, 1H), 3.96 (m, H5'b, 1H), 3.83- $3.72 \text{ (m, H5"}_{b}, 2 \times \text{OCH}_{3}, 7\text{H}), 3.69 \text{ (dd, H5'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{ Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5, 2.5 \text{Hz}, 1\text{H}), 3.63 \text{ (m, H4'}_{a}, J = 11.5$ 1H), 3.37 (m, H5"<sub>a</sub>, J = 11.5, 2.5 Hz, 1H,), 3.14-2.91 (m, PCH<sub>2</sub>, 2H), 2.32-1.86 (m,  $H2'_{a}, H2''_{b}, H2''_{b}, H2''_{b}, 4H$ , 1.42 (m,  $CH_{3a}, 3H$ ), 1.01, 1.00 (2×s, ( $CH_{3}$ )<sub>3</sub>Si, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 171.1, 165.2, 164.0, 164.8, 163.8, 163.6, 158.8, 158.7, 152.6, 152.3, 151.8, 151.6, 150.7, 150.3, 149.9, 149.7, 145.0, 144.8, 144.7, 142.7, 141.7, 141.1, 136.3, 136.2, 135.9, 135.85, 135.81, 135.5, 135.4, 135.1, 134.8, 133.9, 133.5, 133.4, 132.8, 132.7, 132.5, 132.0, 131.9, 130.3, 130.2, 130.1, 130.0, 129.7, 129.6, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 127.97, 127.90, 127.3, 127.2, 123.6, 123.4, 113.4 (arom.  $+ C2_a, C4_a$ ), 111.4, 111.3 (C5<sub>a</sub>), 87.4 (Ar<sub>3</sub>C), 85.9 (d, J = 3.5 Hz), 85.3 (d, J = 6.0 Hz), 84.7 (d, J = 7.4 Hz), 84.5 (d, J = 7.4 Hz) (C4'<sub>b</sub>, C4'<sub>b</sub>), 84.8, 84.3, 84.1, 83.9 (C1'<sub>a</sub>, C1'<sub>b</sub>), ~77.5 (C3'<sub>a</sub>), 74.1, 73.8 (C3'<sub>b</sub>), 65.6 (d, J = 7.6 Hz), 65.0 (d, J= 7.2 Hz (C5<sup>'</sup><sub>b</sub>), 63.6, 63.5 (C5<sup>'</sup><sub>a</sub>), 55.2 (CH<sub>3</sub>O), 39.6, 39.4, 39.0 (d, J = 5.6 Hz), 38.8  $(C2'_{a}, C2'_{b})$ , 33.7, 33.5  $(2 \times d, PCH_2, J = 137 \text{ Hz})$ , 26.9  $((CH_3)_3 \text{CSi})$ , 19.25, 19.23  $((CH_3)_3CSi)$ , 11.7  $(CH_{3a})$ ; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  28.1 and 27.3; HRMS: m/z1296.4626 ([M+Na]<sup>+</sup>, C<sub>71</sub>H<sub>72</sub>N<sub>7</sub>NaO<sub>12</sub>PSi<sup>+</sup> calcd. 1296.4638);

**Diethyl benzylphosphonothioate (18).** Colorless oil, 193 mg yield (79 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.33-7.23 (m, 5H), 4.10-3.96 (m, 4H), 3.36 (d, J = 19.0 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  131.7 (d,  $J_{P-C}$  = 8.7 Hz), 130. 3 (d,  $J_{P-C}$  = 6.5 Hz), 128.4 (d,  $J_{P-C}$  = 3.6 Hz), 127.2 (d,  $J_{P-C}$  = 4.4 Hz), 63.0 (d,  $J_{P}$ .

<sub>C</sub> = 7.1 Hz), 42.7 (d,  $J_{P-C}$  = 108.3 Hz), 16.2 (d,  $J_{P-C}$  = 6.9 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  93.5; HRMS: m/z 267.0586 ([M+Na]<sup>+</sup>, C<sub>11</sub>H<sub>17</sub>NaO<sub>2</sub>PS<sup>+</sup> calcd. 267.0579);

5'-O-(tert-Butyldiphenylsilyl)thymidin-3'-yl ethyl benzylphosphonothioate – mixture of diastereoisomers (19). White amorphous solid, 282 mg yield (83 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.80 (bs, H3, 1H), 7.67-7.60 (m, H<sub>Ar</sub>, 4H), 7.49-7.16 (m, H<sub>Ar</sub> and H6, 12H), 6.40 (m, H1', 1H), 5.33 and 5.15 (2×m, H3', 1H), 4.13 (m, H4', 0.5H), 4.12-3.96 (m, POC $H_2$ , 2H), 3.91-3.86 (m, H5', 1H), 3.79 (dd, H5', J = 11.5, 1.8 Hz, 0.5H), 3.72 (m, H4', 0.5H), 3.67 (dd, H5', J = 11.5, 2.1 Hz, 0.5H), 3.41 and 3.38 (2×d, PCH<sub>2</sub>, J = 19.2 Hz, 2H), 2.45 (dd, H2', J = 13.8, 5.1 Hz, 0.5H), 2.24-2.15 (m, H2', 1H), 2.05 (m, H2', 0.5H), 1.59 and 1.57 (2×s, H5, 3H), 1.28 and 1.18 (2×t, POCH<sub>2</sub>CH<sub>3</sub>, J = 7.1 Hz, 3H), 1.06 and 1.05 (2×s, tB-Si, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): *δ* 163.70, 163.67, 150.47, 135.77, 135.77, 135.3, 135.07, 135.04, 133.0, 132.9, 132.0, 131.9, 130.90 and 130.87 ( $2 \times d$ ,  $J_{P-C} = 8.3$  Hz), 130.40 and 130.37 ( $2 \times d$ ,  $J_{P-C} = 6.4$  Hz), 130.32, 130.2, 128.63, and 128.5 (2×d,  $J_{P-C} = 3.8$  Hz), 128.2, 128.1, 127.6 and 127.5 (2×d,  $J_{P-C} = 4.4$  Hz), 111.67, 111.63, 86.30, 86.28, 86.01, 85.96, 84.54, 84.48, 77.9 and 77.2 (2×d,  $J_{P-C}$  = 6.7 Hz), 63.90, 63.84, 63.3 and 63.0 (2×d,  $J_{P-C}$  $_{\rm C}$  = 7.4 Hz), 42.9 (d,  $J_{\rm P-C}$  = 107.5 Hz), 42.6 (d,  $J_{\rm P-C}$  = 108.3 Hz), 39.80, 39.76, 39.28, 39.21, 31.4, 27.1, 19.49, 19.46, 16.31 and 16.16 ( $2 \times d$ ,  $J_{P-C} = 7.2$  Hz), 12.15, 12.09; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  95.1 and 94.5 ; HRMS: *m/z* 701.2260 ([M+Na]<sup>+</sup>,  $C_{35}H_{43}N_2NaO_6PSSi^+$  calcd. 701.2241);

#### Benzyl-(5-(diphenylphosphino)-9,9-dimethyl-9H-xanthen-4-

yl)diphenylphosphonium bromide.

Xantphos (0.2 mmol, 116 mg) and benzyl bromide (0.6 mmol, 72  $\mu$ L) was refluxed in THF (3 mL) overnight. After cooling (0 °C) the reaction mixture, the precipitated crystals were filtered off and washed with cold diethyl ether to obtain the pure compound in 72 % (108 mg) yield after evaporation.

<sup>1</sup>H NMR (400 MHz, CDCl3):  $\delta$  8.01 and 7.99 (2×s, 1H), 7.68-7.60 (m, 2H), 7.54-7.44 (m, 9H), 7.36-7.26 (m, 2H), 7.23-7.15 (m, 7H), 7.12-7.15 (m, 7H), 7.12-7.05 (m, 5H), 6.96-6.88 (m, 4H), 6.64 (m, 1H), 5.23 (dd, <sup>2</sup>*J*<sub>P-H</sub> = 16 Hz and <sup>8</sup>*J*<sub>P-H</sub> = 4 Hz), 1.75 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.5, 151.0, 151.4, 135.7, 135.6, 135.5, 135.4, 135.0, 134.7, 134.2, 134.1, 133.5, 133.3, 132.9, 131.0, 130.1, 130.0, 129.6, 128.9, 128.8, 128.7, 128.5, 127.8, 125.6, 125.5, 125.3, 124.4, 124.2, 118.1, 117.3, 104.8, 104.0, 34.7, 32.4, 30.8 (dd, *J*<sub>P-C</sub> = 46.7, 14.6 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  23.1 and -21.3; HRMS: *m/z* 771.1560 ([M+Na]<sup>+</sup>, C<sub>46</sub>H<sub>39</sub>BrNaOP<sub>2</sub><sup>+</sup> calcd. 771,1552);

































Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009























Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009



Figure S1. Comparison between 3 mol%  $Pd(OAc)_2 + 6$  mol% Xantphos and 1.5 mol% Pd<sub>2</sub>dba<sub>3</sub> (CHCl<sub>3</sub>) + 3 mol% Xantphos in coupling of Bn-Cl with diethyl Hphosphonate under standard reaction conditions.



Figure S2. Alkylation of different phosphine ligands with benzyl bromide, in THF at 60 °C (0.10 mmol bidentate ligands or 0.20 mmol triphenylphosphine, 1.0 mmol benzyl bromide, 5 mL THF).



Triphenylphosphine (TPP)

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2009

DPEphos  $t_{1/2} = 30.5$  min Xantphos  $t_{1/2} = 91.2$  min Triphenylphosphine  $t_{1/2} = 100.5$  min



**Figure S3.** Comparison of xantphos alkylation with benzyl bromide, in presence and absence of Pd<sub>2</sub>dba<sub>3</sub>(CHCl<sub>3</sub>), in THF at 60 °C (0.10 mmol xantphos, 1.0 mmol benzyl bromide, none or 0.05 mmol Pd Pd<sub>2</sub>dba<sub>3</sub>(CHCl<sub>3</sub>), 5 mL THF).



**Figure S4.** <sup>31</sup>P NMR spectra showing the oxidative additon of equimolar amounts of benzyl bromide to  $Pd_2(dba)_3(CHCl_3)$ ]/Xantphos (1:2 mol ratio), followed by the reaction of added diethyl H-phosphonothioate (5 equiv.) and *N*,*N*-diisopropylethylamine (5 equiv.).