Phosphole-based π -conjugated materials for OLEDs

Damien Joly, Denis Tondelier, Valérie Deborde, Bernard Geoffroy, Muriel Hissler, and Régis Réau

Table S1. Crystal data and structure refinement for derivative 3b after the 'squeeze' treatment.

molecular formula	C44 H39 Au Cl P		
molecular weight, g/mol	831.14		
a, Å	11.2536(9)		
b, Å	25.600(3)		
c, Å	13.7924(14)		
a, deg	90		
b, deg	98.022(3)		
g, deg	90		
V, Å ³	3934.6(7)		
Z	4		
D_{calc} , g cm ⁻³	1.403		
crystal system	Monoclinic		
space group	P21/n		
Т, К	100(2)		
wavelength Mo Ka, Å	0.71073		
m, mm ⁻¹	3.875		
<i>F</i> (000)	1656		
θ limit, deg	1.59 - 26.56		
no. reflns collected	31372		
no. ind reflns	8060		
reflections $[I > 2s(I)]$	6332		
data/restraints/parameters	8060 / 0 / 424		
GOF on F^2	1.036		
final R indices	R1 = 0.0461		
[I > 2s(I)]	wR2 = 0.1266		
largest diff peak	2.284		
and hole (e Å ⁻³)	2.284 -2.328		

Table S2. Crystal data and structure refinement for derivative 3b before the 'squeeze' treatment.

molecular formula	C45 H41 Au Cl3 P
molecular weight,	
g/mol	916.06
α, Å	11.2536(9)
β, Å	25.600(3)
χ, Å	13.7924(14)
α, deg	90
β, deg	98.022(3)
γ, deg	90
V, Å ³	3934.6(7)
Z	4
D_{calc} , g cm ⁻³	1.543
crystal system	Monoclinic
space group	P21/n
Т, К	100(2)
wavelength Mo Ka, Å	0.71073
μ , mm ⁻¹	4.014
<i>F</i> (000)	1824
θ limit, deg	1.59 - 26.56
no. reflns collected	31372
no. ind reflns	8060
reflections $[I > 2\sigma(I)]$	6323
data/restraints/parameters	8060 / 0 / 469
GOF on F ²	1.092
final R indices	R1 = 0.0524
$[I > 2\sigma(I)]$	wR2 = 0.1347
largest diff peak	2.175
and hole (e Å ⁻³)	-2.430

Compounds	E_{ox}/V^{a}	E_{ox}^{onset}/V	E_{red}/V^a	$E_{\rm red}^{\rm onset}/V$	HOMO/eV ^b	LUMO/eV ^c	DE^{EI}/eV^{d}
3 a	+ 1.47	+ 1.26	-1.55	- 1.47	- 5.66	- 2.93	2.73
3b	+ 1.37	+ 1.28	-1.58	- 1.51	- 5.68	- 2.89	2.79
4a	+ 1.38	+ 1.18	-1.60	- 1.47	- 5.58	- 2.93	2.65
4b	+ 1.32	+ 1.12	-1.56	- 1.52	- 5.52	- 2.88	2.64
Α	+ 1.95	+ 1.40	-1.64	- 1.60	- 5.80	- 2.80	3.00
В	+ 1.62	+ 1.37	-1.58	- 1.61	- 5.77	- 2.79	2.98

Table S3 : Electrochemical data for 3a,b, 4a,b and RAuCI/Rs (vs. SCE)

^{*a*}All potentials were obtained during cyclic voltametric investigations in 0.2 M Bu₄NPF₆ in CH₂Cl₂. Platinum electrode diameter 1 mm, sweep rate: 200 mV s⁻¹. ^{*b*} Calculated from the onset oxidation potential $\mathbb{E}_{out}^{\text{conset}/V}$. ^{*c*}Calculated from the onset reduction potential $\mathbb{E}_{out}^{\text{conset}/V}$.

Figure S2 EL spectra of the devices I-IV recorded at 30 mA/cm².

Figure S4 CIE coordinates of diodes I-IV.

Compounds	Diodes		$B_1^{a}/cd.m^{2}$	B ₁ ^b /cd.m ⁻²	
		1	28.4	21.1	
4a	111	2	23.6	17.0	
		3	26.2	20.6	
		1	120.1	114.3	
4b	IV	2	118.9	110.5	
		3	109.4	97.6	

 $^{^{\}rm a}$ brigthness at 1 mA, measured before IVL measurement; $^{\rm b}$ brigthness at 1 mA, measured after IVL measurement

Figure S5 Measurements of the Brigthness at 1 mA before and after IVL Characterizations