Supporting Information

for

Regioselective near-equatorial chlorination of C_s - $C_{70}(CF_3)_8$

A. A. Goryunkov, N. A. Samokhvalova, P. A. Khavrel, N. M. Belov, V. Yu. Markov,

L. N. Sidorov, and S. I. Troyanov

in

New Journal of Chemistry

Table of contents

Table S1. Schlegel diagrams, relative energies (at the DFT and AM1 levels of theory), and IUPAC lowest-locant indexes for isomers of $C_{70}(CF_3)_8Cl_2$ within 50 kJ mol ⁻¹ DFT energy gap	<i>S</i> 2
Table S2. Fragments of 3D projections of $C_{70}(CF_3)_8X_2$, X=H, Cl, Br, CF ₃ , their relative DFT energies (within full set of corresponding isomers); some XX, CF ₂ –FX distances and C_{cage} – C_{cage} – C –F dihedral angles are given (DFT optimized geometries)	<i>S</i> 4
Figure S1. Top and side projections of probability isodensity surfaces (0.04) associated with HOMO (left) and LUMO (right) of C_s - $C_{70}(CF_3)_8$	<i>S5</i>
Table S3. Possible radical $C_{70}(CF_3)_8Cl$ · intermediates within 40 kJ mol ⁻¹ DFT energy gap	<i>S</i> 6
Figure S2. Mulliken and Hirshfeld population analyzes (MPA and HPA) of cage carbon atoms of the most energetic preferable radical intermediate $C_{70}(CF_3)_8Cl^2$	<i>S</i> 8
Table S4. Experimental and calculated ¹⁹ F NMR chemical shifts in C_s - $C_{70}(CF_3)_8$ and C_s - $C_{70}(CF_3)_8Cl_2$	<i>S</i> 9

Table S1. Schlegel diagrams, relative energies (at the DFT and AM1 levels of theory), and IUPAC lowest-locant indexes for isomers of $C_{70}(CF_3)_8Cl_2$ within 50 kJ mol⁻¹ DFT energy gap. Filled and empty circles denote site of addition CF₃ groups and chlorine atoms

Na	Schlegel Diagrams of	$\Delta \Delta_{ m f} H^o_{ heta}$	kJ mol ¹	IIIDAC nama	
J <u>\</u>	$C_{70}(CF_3)_8Cl_2$	DFT	AM1		
1		0.0	0.0	11,29-dichloro- 1,4,19,41,49,60,66,69- octa(trifluoromethyl)-C ₇₀	
2		24.8	11.9	49,66-dichloro- 1,4,11,19,31,41,60,69- octa(trifluoromethyl)-C ₇₀	
3		26.0	0.4	10,25-dichloro- 1,4,19,41,49,60,66,69- octa(trifluoromethyl)-C ₇₀	

Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and
The Centre National de la Recherche Scientifique, 2010

Na	Schlegel Diagrams of	$\Delta \Delta_{ m f} H^o_{ heta}$	kJ mot ¹	UIDAC nama	
JVY	$C_{70}(CF_3)_8Cl_2$	DFT	AM1	- IUFAC nume	
4		43.5	41.4	24, 61-dichloro-1, 4, 11, 19, 31, 41, 51, 64-octa(trifluoromethyl)-C ₇₀	
5		47.1	19.2	46,47-dichloro- 1,4,11,19,31,41,60,69- octa(trifluoromethyl)-C ₇₀	
6		47.6	40.8	8, 27-dichloro-1, 4, 19, 41, 49, 60, 66, 69-octa(trifluoromethyl)-C ₇₀	

Table S2. Fragments of 3D projections of $C_{70}(CF_3)_8X_2$, X=H, Cl, Br, CF₃, their relative DFT energies (within full set of corresponding isomers); some X...X, CF₂–F...X distances and C_{cage} –C–F dihedral angles are given (DFT optimized geometries)

$C_{70}(CF_3)_8X_2, X=$	$DFT \ \Delta \Delta_{\rm f} H^o_{\theta} \ kJ \ mot^1$	Fragment of 3D Projection of C70(CF3)8X2		
Н	0.0			
Cl	0.0	31 Å 32 Å		
Br	0.0			
CF3	12.0	50 T T T T T T T T T T T T T		

Figure S1. Top and side projections of probability isodensity surfaces (0.04) associated with HOMO (left) and LUMO (right) of C_s - $C_{70}(CF_3)_8$

Table S3. Possible radical $C_{70}(CF_3)_{\delta}Cl^{\circ}$ intermediates within 40 kJ mol⁻¹ DFT energy gap. Filled and empty circles denote sites of addition CF_3 groups and chlorine atom

N₂	Schlegel diagrams of C ₇₀ (CF ₃) ₈ Cl ⁻ intermediate	$DFT \ \Delta \Delta_{\rm f} H_{\theta}^{o}, \\ kJ \ mot^{1}$	N₂	Schlegel diagrams of C ₇₀ (CF ₃) ₈ Cl intermediate	$DFT \Delta \Delta_{\rm f} H_{\theta}^{o}, \\ kJ mot^{1}$
9		30.5	13		34.1
10		31.3	14		35.1
11		33.2	15		37.7
12		33.3	16		38.7

Figure S2. Mulliken and Hirshfeld population analyzes (MPA and HPA) of cage carbon atoms of the most energetic preferable radical intermediate $C_{70}(CF_3)_8Cl$. Triangles and black filled circle denote sites of addition CF_3 groups and chlorine atom, correspondingly

Table S4. Experimental and calculated ¹⁹F NMR chemical shifts in C_s - $C_{70}(CF_3)_8$ and C_s - $C_{70}(CF_3)_8Cl_2$

	¹⁹ F NMR shifts - δ F, ppm				
Assigns	Cs-C70	(CF ₃) ₈	$C_{s}-C_{70}(CF_{3})_{8}Cl_{2}$		
15518115	Experimental	Theoretical	Experimental	Theoretical	
Terminal CF ₃	65	.74	62.36		
	61.68	59.16	61.67	61.11	
Non terminal CF ₃	61.46	58.96	61.49	60.80	
	61.40	58.47	61.44	60.68	

 a To bring theoretical scale in correspondence with the experimental one, quartets' positions in calculated spectra were set to those in experimental spectra.