This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

Electronic Supplementary Information (ESI)

Fluorescence enhancement of a tetrazole-based pyridine coordination polymer hydrogel

Ji Ha Lee,^a Hyejin Lee,^a Sungmin Seo,^a Justyn Jaworski,^a Moo Lyong Seo,^a Sunwoo Kang,^b Jin

Yong Lee,*^b and Jong Hwa Jung*^a

^a Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701 (Korea); E-mail: jonghwa@gnu.ac.kr

^b Department of Chemistry and Institute of Basic Science Sungkyunkwan University, Suwon 440-746, Korea ; E-mail : jinylee@skks.edu

Fig. S1 Photograph of hydrogel **2** (20 mM) with Mg^{2+} (4 equiv) at pH= 12.

Fig. S2 Photograph of hydrogels 1 (20 mM) with (a) Cu^{2+} , (b) Co^{2+} , (c) Zn^{2+} and (d) Ni^{2+} ions at pH=12.

This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

Fig. S3 Photographs of hydrogels **1** (20 mM) in the presence of magnesium anions (4 equiv) (a) NO_3^{-} , (b) Br^{-} , (c) SO_4^{-2-} , (d) Cl⁻ and (e) l⁻ (A) without and (B) with irradiation of UV light.

Fig. S4 SEM images of Mg²⁺ coordination polymeric gel 1 with different anions; (a) MgSO₄,
(b) MgBr₂, (c) MgI₂ and (d) Mg(NO₃)₂.

Fig. S5 X-ray powder diffraction pattern of (a) ligand 1 and (b) Mg²⁺ coordination polymer gel 1.

Fig. S6 The 2D expanded structure of Mg^{2+} coordination polymer gel 1 from B3LYP/3-21G* optimized structure.

Fig. S7 Fluorescence spectra of 1 (20 mM) in the presence of Co^{2+} , Zn^{2+} , Ni^{2+} and Cu^{2+} (4 equiv) at pH= 12.

Fig. S8 Fluorescence spectra of hydrogel **1** (20 mM) by the addition of Mg^{2+} ion; (a) 1.0 equiv, (b) 2.0 equiv, (c) 3.0 equiv, (d) 4.0 equiv, (e) 5.0 equiv and (f) 6 equiv.

Fig. S9 Fluorescence spectra of Mg^{2+} (4 equiv) coordination polymer gel 1 (20 mM) with different anions; (a) NO₃⁻, (b) Cl⁻, (c) SO₄⁻, (d) Br⁻, (e) l⁻.

Fig. S10 (a) Fluorescence spectra of Mg²⁺ (4 equiv) coordination polymeric gel **1** (20 mM) at different temperatures (20° C, 25 °C, 30 °C, 35 °C, 40 °C, 45 °C, 50 °C, 55 °C, 60 °C, 65 °C, 70 °C). (b) Plot of fluorescence intensity of Mg²⁺ coordination polymeric gel **1** function of temperature.

Fig. S11 Differential scanning calorimetric thermogram (DSC) of Mg^{2+} (4 equiv) coordination polymer gel 1 (20 mM).

Fig. S12 Fluorescence decay of Mg^{2+} Coordination polymer gel 1 obtained by time-resolved fluorescence confocal microscopy.

Fig. S13 (A) Strain sweep at a frequency of 1 rads⁻¹ of Mg^{2+} coordination polymer gel **1.** (B) Time sweep for Mg^{2+} coordination polymer gel **1** at strain of 0.1%.