Engineering N-(2-pyridyl)aminoethyl alcohols as potential precursors of

thermolabile protecting groups

Marcin K. Chmielewski^{*}, Ewa Tykarska[#], Wojciech T. Markiewicz, Wojciech Rypniewski

Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12-14, 61-704 Poznań, Poland, [#]Department of Chemical Technology of Drugs, University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland

Contents:

(1) General remarks	1
(2) Table 1. NMR analysis of five compounds	3
(3) Table 2 of X-ray experimental details of 1 to 5	3
(4) Potentiometric measurements	4
(5) ${}^{1}\text{H} {}^{13}\text{C}$ NMR spectra and mass spectra for 1	6
(6) ${}^{1}\text{H} {}^{13}\text{C}$ NMR spectra and mass spectra for 2	9
(7) ${}^{1}\text{H} {}^{13}\text{C}$ NMR spectra and mass spectra for 3	12
(8) ${}^{1}\text{H} {}^{13}\text{C}$ NMR spectra and mass spectra for 4	16
(9) ${}^{1}\text{H} {}^{13}\text{C}$ NMR spectra and mass spectra for 5	19
(10) Analysis of termostability of compound 4	

(1) General remarks:

All reagents (analytical grade) were obtained from commercial suppliers and used without further purification. Hexane and dichloromethane were freshly distilled from CaH₂ and P₂O₅, respectively. All other solvents and liquid reagents were dried through storage over activated 3Å (MeOH, MeCN) molecular sieves. ¹H, ¹³C-NMR. The NMR spectra were recorded at 298 K on a Bruker Advance DRX 400 spectrometer operating at frequencies 400.13201 MHz (¹H) and 100.62281 MHz (¹³C).

Liquid secondary ion mass spectrum (low and high resolution) was obtained on an AMD 604 two sector mass spectrometer of reverse B/E geometry, made by AMD Intectra (Germany). A CsI gun supplied the primary ion beam (12 keV, Cs+). The secondary ion beam was accelerated to 8 kV. The compound was dissolved in 3-nitrobenzyl alcohol (Aldrich)

Hydrogen at	1	2	3	4	5
C3	6.54 dd J=4.95, 7.03 Hz	6.44 dd J=7.09	6.47 dt Jt=7.23 Hz	Х	6.49 m
C4	7.43 2xdd J= 2.01, 7.03 Hz	7.33 dd J=1.99, 7.09 Hz	7.24 t Jt=7.23 Hz	8.27 d J=4.77Hz	7.35 dd J= 1.96 Hz, 7.03 Hz
C5	6.58 dt J=1.38, 8.67 Hz	6.48 d J= 8.5 Hz	6.45 d Jd=8.6 Hz	6.56 t Jt=4.77 Hz	6.47 m
C6	8.06 dd J = 1.38, 4.86 Hz	7.94 dd J= 1.25, 5.05Hz	7.97 dd Jd=1.16, 4.95 Hz	8.27 d J=4.77Hz	7.96 dd J=1.85, 4.94 Hz
C8	_	3.52 t J= 6.01 Hz	4.76 q Jq=4.4,	4.7 q J=3.8 Hz, J= 7.6 Hz	4.19 t Jt= 5.7 Hz
C7	3.59 m 4H	3.31 q J= 5.87, 6.01 Hz	9a 3.52 ddd Jd= 4.4, 6.5, 13.20 Hz 9b 3.28 t, d Jt= 4.93 Hz, Jd=13.05 Hz	3.54 ddd Jt=4.72 Hz Jd=7.6 Hz	3.51 q Jq=5.56 Hz

Table 1. NMR analysis of five compounds

To whom correspondence should be addressed.

01	4.79 m	4.76 m	5.68 m	5.5 d J= 4.06 Hz	
N2		6.42 m	6.52 m1H	6.96 t J= 4.76 Hz	6.67 t J= 5.64 Hz
aromatic	7.30 m 2H 7.21 m 3H		7.35 m 5H	7.30 m 5H	

The X-ray data, collected at the DESY synchrotron, were of good quality and crystal structures were solved

for all the reported compounds¹ (Table 4)

Table 2. X-ray experimental details of 1 to 5.

	1	2	3	4	5
formula	$C_{14}H_{16}N_2O$	$C_7H_{10}N_2O$	$C_{13}H_{14}N_2O$	$C_{12}H_{13}N_{3}O$	$C_{15}H_{18}N_4O_3$
fw	228.29	138.17	214.26	215.25	302.33
crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic	monoclinic
space group	$P2_1/n$	$Pca2_1$	$P2_{1}2_{1}2_{1}$	$P2_1/c$	C2/c
a, Å	10.756(2)	8.841(2)	6.048(1)	5.605(1)	32.33(7)
b, Å	5.926(1)	9.053(2)	7.315(2)	20.972(4)	5.791(1)
c, Å	18.840(4)	8.630(2)	24.334(5)	9.500(2)	16.392(3)
β, deg	99.58(3)			108.1(3)	104.42(3)
$V, Å^3$	1184.1(4)	690.7(2)	1076.6(4)	1061.4(4)	2973.7(10)
wavelength, Å	0.81620	0.8125	0.81620	0.81620	0.80800
Z	4	4	4	4	8
Resolution range	*20.0-0.76 (0.77-	10-0.75 (0.76-	20.0-0.75 (0.76-	20.0-0.75 (0.76-	10.0-0.75 (0.76-
(Å)	0.76)	0.75)	0.75)	0.75)	0.75)
$D_c, g/cm^3$	1.281	1.329	1.322	1.347	1.351
μ , cm ⁻¹	0.082	0.092	0.085	0.089	0.097
R_{merge}^{\dagger}	0.050 (0.135)	0.032 (0.039)	0.037 (0.095)	0.028 (0.057)	0.045 (0.086)
R_1 (obs. data)	0.0449	0.0435	0.0496	0.0473	0.0451
wR_2 (obs. data)	0.1207	0.1213	0.1389	0.1328	0.1283
independ refs	2806	906	1566	2574	3622
refs I > $2\sigma(I)$	2732	885	1524	2522	3471

*Values in parenthesis are for the last resolution shell. * $R_{\text{merge}} = \sum_{hkl} \sum_i |I_i(hkl) - \langle I(hkl) \rangle| / \sum_{hkl} \sum_i I_i(hkl)$, where $I_i(hkl)$ and $\langle I(hkl) \rangle$ are the observed individual and mean intensities of a reflection with the indices hkl, respectively, \sum_i is the sum over *i* measurements of a reflection with the indices *hkl*, and Σ_{hkl} is the sum over all reflections.

¹ Sheldrick GM. Acta Cryst., A64, 112-122, 2008

Potentiometric measurements carried out in acetonitrile/water (70%:30%)

Potentiometric measurements carried out in methanol/water (50%:50%)

NaOH c = $3.04 \cdot 10^{-2}$ M **pKa**₁ = 4.97 ± 0,04 and **pKa**₂ = 6,42 ± 0.03

Compound 1

¹H NMR

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2011

Compound 2

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2011

MS analysis

Compound **3** ¹H NMR

NOESY+D2O

Compound 4

MS analysis

Compound **5** ¹H NMR

MS analysis

Analysis of termostability of compound 4

The compound **4** was converted into thermolabile 5'-carbonates in 3'acetyl thymidine (see scheme below)

HPLC analysis of termostability carbonates from 4 in 90 °C

