Supplementary Data

On the nucleation of graphene in chemical vapor deposition

Baoshan Hu,*^{*a,b*} Hiroki Ago, ^{*b,c*} Carlo M. Orofeo, ^{*c*} Yui Ogawa ^{*c*} and Masaharu Tsuji ^{*b,c*}

^{*}To whom correspondence should be addressed: hubaoshan@cqu.edu.cn.

^aSchool of Chemistry and Chemical Engineering, Chongqing University, P.R.China;

^bInstitute for Materials Chemistry and Engineering, Kyushu University, Japan;

^cGraduate School of Engineering Sciences, Kyushu University, Japan.

Fig. S-1 SIMS analysis of C+ and Cu+ species as a function of etching time for the as-sputtered Cu film deposited on c-plane Al_2O_3 . The data shows that the 500 µm thick Cu film is almost etched away after 100 min, and signal of C+ species is at a minimum level. We also studied C- species, which is more sensitive than C+, but only minimum level C- was detected (not shown here).

Fig. S-2 (a) Optical micrograph of transferred graphene film from the Cu/c-plane Al_2O_3 with the ${}^{13}CH_4$ -CVD at 900°C (${}^{13}CH_4/H_2/Ar = 20/20/400$ sccm). (b) Representative Raman spectra measured at 2 random points of graphene film (a), which indicate the separated ${}^{12}C$ - and ${}^{13}C$ -graphene domains. This suggests the different ${}^{12}C$ source from the gas-supplied ${}^{13}CH_4$.