Tunable wettability via counterion exchange of the polyelectrolyte brushes grafting on cotton fabric

Cheng Jiang^{a,b}, Qihua Wang^{a,*} and Tingmei Wang^a

^a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou 730000, PR China

^b Graduate School, Chinese Academy of Sciences, Beijing 100039, PR China

*Corresponding author. E-mail: <u>Wangqh@lzb.ac.cn</u>

H ₂ O/CH ₃ OH(V/V)		1/0	3/1	1/1	1/3	0/1
CA(°)in different	PFO	152	153	154	154	154
solvents	SCN	152	150	< 5	< 5	< 5

Table S1. The CA of the PMETAC films in different solvents.

Five volume ratios of H_2O and CH_3OH were selected to study the wettability change of PMETAC films bearing with PFO and SCN⁻ respectively. We found that when the volume ratio of H_2O/CH_3OH was 3/1, the wettability of the PMETAC films after exchange from PFO to SCN⁻ showed almost no change. However, the wettability switch can be realized when the volume ratio CH_3OH was further increased. In H_2O and CH_3OH mixture, when the ratio of CH_3OH was too low, the poorly solvated PFO ions mainly surrounded by water molecule and the counterion exchange from PFO to SCN- was incomplete, so the wettability showed little change. While the volume ratio of CH_3OH increased, the reversible switch of PMETAC film can be achieve.

Figure S1. The stability of the CA on the PMETAC films bearing with PFO immersing in CH_3OH/H_2O (V/V: 1/1) mixture.

The CA values were measured at room temperature (about 22 °C) and the relative humidity was about 40 %. The stability of the CA was measured on the same sample when a water droplet was deposited on the surface after 1 min up to 20 min.