Supporting Information

Cu(II) conjugation along the transformation of Vitamin K₃ derivative to dinaphthoquinone methide radical

Kirti D. Badave,^a Shalaka S. Patil,^b Ayesha A. Khan,^b Darbha Srinivas,^c Raymond J. Butcher,^d Rajesh G. Gonnade,^e Vedavati G. Puranik,^e Rahul V. Pinjari,^a Shridhar P. Gejji^a and Sandhya Y. Rane^{a,*}

^a Department of Chemistry, University of Pune, Pune-411007, India.

^b Institute of Bioinformatics and Biotechnology, University of Pune, Pune-411007, India. ^c Catalysis Division, National Chemical Laboratory, Pune-411008, India. ^d Chemistry Department, Howard University, D.C. 20059, USA. ^e Centre for Material Characterization, National Chemical Laboratory,Pune-411008, India.

E-mail:syrane@chem.unipune.ac.in

Table of Contents	
GSH activity calculations	S2
Table S1: Data on Crystal data and structure refinement for $1,1'$ -methide-bi-Vitamin K ₃ , An outline to calculate Lattice energies has also been presented.	S3
Cu estimation results. ORTEP of 1,1'methide-bi-Vitamin K ₃ (B) and elemental analyses	S4
Figure S1: The numbering scheme in B .	S5
Figure S2: Correlation diagram between the energy eigenvalues of selected MOs, Figure S3: The MOs in B (neutral) and B (radical) forms.	S6
Table S2: The Fermi contact coupling constant (FC) (in G) for atoms in the radical form.	S7
Figure S4: Frozen glass X-band ESR spectrum of B in DMSO at 70 K.	S8
Figure S5: (a) Plot of μ_{eff} (BM) vs. T (K) and (b) Plot of χ_m^{corr} . T (cm ³ mol ⁻¹ . K) vs. T (K) of B .	S9

GSH activity calculations:

1. The net rate of decrease in A_{340} for the sample was calculated by subtracting the rate observed for a blank (where water is used instead of sample) from the rate observed for each sample.

2. The net A $_{340}$ /min for the test sample was converted to NADPH consumed using the following relationship:

1 unit of Glutathione Reductase causes the formation of 1 mmol NADP + form NADPH per min at pH 7.0 at 25° C.

Extinction coefficient for NADPH is 0.00622 mM⁻¹ cm⁻¹ at 340 nm.

3. Activity of GR is expressed as International Unit/Liter (U/L) of the sample or in terms of the protein or hemoglobin content.

4. A theoretical unique factor is determined to convert change in absorbance per minute (Δ /min) to the corresponding units of enzyme activity. This factor is calculated using the following equation:

U/L = ΔA /minute X F; where F= factor F = (TV/SV) X 10³ / 6.22, where TV = Total Volume in ml SV = Sample Volume in ml 10³ = converts ml to L 6.22 = millimolar absorbance coefficient

For this assay, with a 1 cm light path, the factor calculates to be 4455. This factor can be programmed into the spectrophotometer and the machine directly converts the change in absorbance at 340 nm (ΔA /min) to activity in U/L, or alternately, results can be calculated manually.

Identification code	1,1'-methide-bi-Vitamin K ₃		
Empirical formula	$C_{22} H_{16} O_2$		
Formula weight	312.35		
Temperature	123(2) K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -ī		
Unit cell dimensions	a = 7.5080(4) Å	$\alpha = 82.421(5)^{\circ}$.	
	b = 9.0339(7) Å	$\beta = 87.073(4)^{\circ}$.	
	c = 12.3483(7) Å	$\gamma = 65.899(6)^{\circ}$.	
Volume	757.85(8) Å ³		
Ζ	2		
Density (calculated)	1.369 Mg/m ³		
Absorption coefficient	0.685 mm ⁻¹		
F(000)	328		
Crystal size	0.54 x 0.18 x 0.08 mm ³		
Theta range for data collection	5.40 to 73.60°.		
Index ranges	-9<=h<=6, -11<=k<=10, -	-14<=l<=15	
Reflections collected	4872		
Independent reflections	2978 [R(int) = 0.0152]		
Completeness to theta = 67.50°	99.8 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	1.00000 and 0.81280		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	2978 / 0 / 219		
Goodness-of-fit on F ²	1.068		
Final R indices [I>2sigma(I)]	R1 = 0.0489, WR2 = 0.1381		
R indices (all data)	R1 = 0.0523, $wR2 = 0.142$	20	
Largest diff. peak and hole	0.400 and -0.193 e.Å ⁻³		
CCDC	801765		

Table S1. Crystal data and structure refinement for 1,1'methide-bi-Vitamin K₃.

Lattice energy calculations:

The inspection of crystal structure from PLATON using KPI (Kitaigorodskii packing index) function revealed a high value for packing index (73.0%). The lattice energies using the OPIX program^[18b] turns out to be -181.0 kJ mol⁻¹. These were obtained by adding atom-atom pair-wise potential energies derived from the UNI force field.^[a, b] The contribution of intermolecular interaction from C20-H20…O1 interactions to the lattice energies was estimated to be -22.3 kJ mol⁻¹ which is in the range of those reported in the literature.^[c, d] The π ··· π interactions those stem from zipping of two layers engaging both rings of naphthoquinone (Cg - Cg =3.904(1) Å) have intermolecular potential of -57.3 kJ mol⁻¹. The assessment of intermolecular potentials associated with $\pi \cdots \pi$ interactions between the benzenoidal phenyl rings within the layered assembly (Cg - Cg = 3.531(1) Å) and stitching of the layered structure (Cg···Cg = 3.604(1) Å) were found to be -42.1 kJ mol⁻¹ and -39.2 kJ mol⁻¹ respectively. These values point to the unusual strength of $\pi \cdots \pi$ interactions in molecular packing. **S3**

a] G. Filippini, A. Gavezzotti, *Acta Crystallogr.*, **1993**, B49, 868-880; b] A. Gavezzotti, G. Filippini, *J. Phys. Chem.*, **1994**, 98, 4831-4837; c] K. M. Sureshan, R. G. Gonnade, Cryst. Eng. Comm., **2013**, 15, 1676-1679; d] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *J. Appl. Crystallogr.*, **2008**, 41, 466-470.

Cu estimation results:

- 1) Blank solution- Nil.
- 2) **B** (M:L :: 1:1) 29.29 ppm in 20.3 mg **B**
- 3) **B** (M:L :: 0.25:1) 27.26 ppm in 20.1 mg **B**

Average Cu required to get 70% yield of DNQM = 28.275 ± 1.015 ppm = $\sim 0.14\%$ $\therefore 100$ g DNQM = 0.14 g Cu or after 100 moles of DNQM 0.688 mole of Cu

X-ray structural studies:

ORTEP of 1,1'methide-bi-vitamin K₃ (DNQM) product (B)

Mol. Wt.: 312.37 Mol Formula: $C_{22}H_{16}O_2$ M.P.=185 °C Molecular Composition: C 84.59 %, H 5.26 %, O 10.24 % Elemental Analyses result of B:

Element	% Expected	% Observed
С	84.59	84.75
Н	5.26	5.45

Computational / Theoretical studies:

Figure. S1: The numbering schemes in B. Carbons are depicted in gray color, oxygens are red and hydrogens are cyan color.

Optimized structures from B3LYP/6-31G (d,p) theory.

Figure S2: Correlation diagram between the energy eigenvalues of selected MOs calculated for DNQM and DNQM radical in their groundstates. The HOMO and LUMO of the **B** are represented by **red** and **green** colours, respectively. The SOMO of the **B** radical is represented by the lavender (83) colour.

мо	B (neutral)	B (radical)		
		Alpha	Beta	
80				
81				
82				
83				
84				
85				

Figure S3: The MOs in B (neutral) and B (radical) forms.

Sr.	Atom	FC	Sr.	Atom	FC
1	С	-1.61	21	С	4.92
2	С	1.51	22	С	-1.43
3	С	-1.27	23	Ο	-5.05
4	С	1.78	24	Ο	-5.05
5	С	-0.83	25	Н	0.28
6	С	1.25	26	Н	-1.10
7	С	-1.45	27	Н	0.18
8	С	5.35	28	Н	-0.90
9	С	-1.43	29	Н	0.19
10	С	4.92	30	Н	3.45
11	С	-1.43	31	Н	4.41
12	С	-1.61	32	Н	0.03
13	С	1.51	33	Н	0.28
14	С	-1.27	34	Н	-1.10
15	С	1.78	35	Н	0.18
16	С	-0.83	36	Н	-0.90
17	С	1.25	37	Н	0.19
18	С	-1.45	38	Н	3.45
19	С	5.35	39	Н	4.41
20	С	-1.43	40	Н	0.03

Table S2: The Fermi contact coupling constant (FC) (in G) for atoms in the radical form.

Figure S4: Frozen glass X-band ESR spectrum of B in DMSO at 70 K.

Figure S5: (a) Plot of μ_{eff} (BM) vs. T (K) and (b) Plot of χ_m^{corr} . T (cm³mol⁻¹. K) vs. T (K) of **B**.

The µeff at 3K is ~0.08 B.M. at 1T applied field which is nearly half of phthiocoloxime^[24]. Such radical dimers showing weak ferromagnetic behavior at liq. He temperature are reported by Palacio *et. al* and Murphy *et. al* (A.J. Banister, N. Bricklebank, I. Lavender, J.M. Rawson, C.I. Gregory, B.K. Tanner, W. Clegg, M.R.J. Elesgood, F. Palacio, Angew. Chem. Int. Ed. Engl. 1996, **35**, 2533, A. Alberola, R.J. Less, C.M. Pask, J.M. Rawson, F. Palacio, P. Oliete, C. Paulsen, A.Yamaguchi, R. Farley, D.M. Murphy, Angew. Chem. Int. Ed. Engl. 2003, 42, 4782). **S9**