Supporting Information

Structure and properties of metal complexes of a pyridine based oxazolidinone synthesized by atmospheric CO₂ fixation

Amrita Sarkar,^a Sudipta Bhattacharyya,^a Suman Kr Dey,^a Subhendu Karmakar^a and Arindam Mukherjee^{*a}

Department of Chemical Sciences Indian Institute of Science Education & Research Kolkata, Mohanpur Campus, P.O.- BCKV Main Campus, District- Nadia, Pin- 741252, INDIA.

Fax: (+91)033-25873118; Tel: (+91)033-25873121; E-mail: <u>a.mukherjee@iiserkol.ac.in</u>

Contents:

 Table S1 Crystallographic data and refinement parameters for complexes 1-3.

Table S2 Screening of solvent for the reaction of 4-bromoanisole and phenylboronic acid.

Scheme S1 Proposed catalytic cycle for Suzuki-Miyaura Coupling by complex 3 in presence of base.

Fig. S1 Effects of treatment of the complexes 1-3 with MCF-7 tumor cell line for 48 h with rising concentrations: (A) 1, (B) 2, (C) 3. The IC₅₀ obtained from the curves are calculated using GraphPad Prism 5.0° . Data are mean \pm SD of three independent experiments.

Fig. S2 Effects of treatment of the complexes 1-3 with A549 tumor cell line for 48 h with rising concentrations: (A) 1, (B) 2, (C) 3. The IC₅₀ obtained from the curves are calculated using GraphPad Prism 5.0° . Data are mean \pm SD of three independent experiments.

Fig. S3 Effects of treatment of the complexes 1-3 with NIH 3T3 tumor cell line for 48 h with rising concentrations: (A) 1, (B) 2, (C) 3. The IC₅₀ obtained from the curves are calculated using GraphPad Prism 5.0° . Data are mean \pm SD of three independent experiments.

Fig. S4 ¹H-NMR of ligand L.

Fig. S5¹³C-NMR of ligand L.

Fig. S6 ¹H-NMR of biphenyl in CDCl₃.

Fig. S7¹³C-NMR of biphenyl in CDCl₃.

Fig. S8 ¹H-NMR of 4-methylbiphenyl in CDCl₃.

Fig. S9¹³C-NMR of 4-methylbiphenyl in CDCl₃.

Fig. S10 ¹H-NMR of 4-methoxylbiphenyl in CDCl₃.

Fig. S11¹³C-NMR of 4-methoxylbiphenyl in CDCl₃.

Fig. S12 ¹H-NMR of 4-acetylbiphenyl in CDCl₃.

Fig. S13¹³C-NMR of 4-acetylbiphenyl in CDCl₃.

Fig. S14 ¹H-NMR of 4-nitrobiphenyl in CDCl₃.

Fig. S15 ¹³C-NMR of 4-nitrobiphenyl in CDCl₃.

Fig. S16 ¹H-NMR of 4-cyanobiphenyl in CDCl₃.

Fig. S17¹³C-NMR of 4-cyanobiphenyl in CDCl₃.

Fig. S18 ¹H-NMR of 2-phenylpyridine in CDCl₃.

Fig. S19¹³C-NMR of 2-phenylpyridine in CDCl₃.

	1	2	3 ^{<i>a</i>}
Empirical formula	$C_{18} H_{20} Cl_2 N_4 O_{12} Cu$	C ₁₁ H ₁₇ Cl ₂ N ₂ O _{3.5} Pt S	$C_{18} H_{20} Cl_2 N_4 O_4 Pd$
F_w (g mol ⁻¹)	618.83	<mark>531.32</mark>	533.68
Temperature(K)	100(2)	100(2)	100(2)
Crystal system	Monoclinic	Triclinic	Monoclinic
space group	<i>P</i> 2(1)/c	<i>P</i> -1	<i>P</i> 2(1)
Crystal size/mm	0.65 x 0.32 x 0.17	0.68 x 0.34 x 0.15	0.54x0.33x0.19
<i>a</i> (Å)	9.0019(4)	8.128(17)	8.239(2)
$b(\text{\AA})$	8.0278 (3)	13.281(3)	13.553(2)
$c(\text{\AA})$	16.0297(7)	14.755(3)	9.605(2)
<i>α</i> (°)	90	97.093(4)	90.00
$\beta(^{\circ})$	99.170(2)	94.263(4)	106.362(3)
γ(°)	90	96.436(4)	90.00
$V(\text{\AA}^3)$	1143.6(8)	1564.3(6)	1029.1(3)
Ζ	2	4	2
$D_{\rm c}~({\rm g/cm^{-3}})$	1.797	2.256	1.722
$\mu(\text{mm}^{-1})$	1.263	9.455	1.194
F(000)	560	1012	536
Limiting indian	-12 < h < 12,	-6 <h<10,< td=""><td>-10 < h < 10,</td></h<10,<>	-10 < h < 10,
Limiting marces	-9 <k<10, -21<l<18< td=""><td>-18<l<18< td=""><td>-17<k<17, -12<l<12< td=""></l<12<></k<17, </td></l<18<></td></l<18<></k<10, 	-18 <l<18< td=""><td>-17<k<17, -12<l<12< td=""></l<12<></k<17, </td></l<18<>	-17 <k<17, -12<l<12< td=""></l<12<></k<17,
Reflections collected	9539	23983	16687
Flack parameter	-	-	0.45(6)
Unique	2050/0.0241	6000/0 006F	1712/00120
Reflections/R _{int}	2850/ 0.0341	6388/ 0.0365	4712/0.0429
Data / restraints /			
parameters	2850/0/169	6388 / 0 / 375	4712 / 1 / 263
Goodness-of-fit ^{b} on F ²	1.033	1.047	
$R_1^c, w R_2^d [I \ge 2\sigma(I)]$	0.0420/ 0.1092	0.0192/ 0.0495	
R_1, wR_2 (all data)	0.0610/ 0.1208	0.0211/ 0.0507	
$10 \sqrt{2} Å^{-3}$	0 860 / 0 500	1 270/ 1 276	

Table S1 Crystallographic data and structure refinement parameters for complexes 1-3.

 $\frac{\Delta \rho_{\text{max/min}} / \text{e} \ \text{\AA}^{-3}}{\text{i t was not possible to derive a fully acceptable structure hence the structure is not published here.}^{b}} \frac{1.370/-1.376}{\text{Goodness-of-fit}=[\Sigma w(F_o^2 - F_c^2)^2]/(N_{\text{reflection}} - N_{\text{params}})]^{1/2}}, \text{ based on all data.}^{c} R_1 = \Sigma (|F_o| - |F_c|)/|F_o|.}^{d}} wR_2 = [R [\Sigma (F_o^2 - F_c^2)^2]/R[\Sigma (F_o^2)^2]]^{1/2}}.$

Table S2 Screening of solvent for the reaction of 4-bromoanisole and phenylboronic acid^[a]

MeO - Br +	$ = \frac{3 (1 \text{ mol}\%) \text{ Cs}_2\text{CC}}{B(\text{OH})_2} \frac{3 (1 \text{ mol}\%) \text{ Cs}_2\text{CC}}{80^{\circ}\text{C}, 2 \text{ hr}} $	MeO / /
Entry	Solvent	% Yield ^[b]
1	H ₂ O	90
2	EtOH	92
3	MeCN	86

^[a]Reaction conditions: 4-bromoanisole (0.093 g, 0.5 mmol), phenylboronic acid (0.0915 g, 0.75 mmol), Cs_2CO_3 (1.5 mmol), ^[b]Isolated yield after column chromatography.

Scheme S1

Scheme S1 Proposed catalytic cycle for Suzuki-Miyaura Coupling by complex 3 in presence of base.

Fig. S1 Effects of treatment of the complexes 1-3 with MCF-7 tumor cell line for 48 h with rising concentrations: (A) 1, (B) 2, (C) 3. The IC₅₀ obtained from the curves are calculated using GraphPad Prism 5.0° . Data are mean \pm SD of three independent experiments.

Fig. S2 Effects of treatment of the complexes 1-3 with A549 tumor cell line for 48 h with rising concentrations: (A) 1, (B) 2, (C) 3. The IC₅₀ obtained from the curves are calculated using GraphPad Prism 5.0° . Data are mean \pm SD of three independent experiments.

Fig. S3 Effects of treatment of the complexes 1-3 with NIH 3T3 tumor cell line for 48 h with rising concentrations: (A) 1, (B) 2, (C) 3. The IC₅₀ obtained from the curves are calculated using GraphPad Prism 5.0° . Data are mean \pm SD of three independent experiments.

Fig. S4 ¹H-NMR of ligand L.

> 49.793 44.663 _____158.59 _____155.75 _____149.23 $\bigwedge^{122.71}_{122.26}$ $\bigwedge^{77.254}_{76.999}$ 61.890 AM-AS-210 in CDCl3 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Fig. S7 ¹³C-NMR of biphenyl in CDCl₃.

Fig. S8 ¹H-NMR of 4-methylbiphenyl in CDCl₃.

Fig. S9¹³C-NMR of 4-methylbiphenyl in CDCl₃.

Fig. S10 ¹H-NMR of 4-methoxylbiphenyl in CDCl₃.

Fig. S11 ¹³C-NMR of 4-methoxylbiphenyl in CDCl₃.

Fig. S12 ¹H-NMR of 4-acetylbiphenyl in CDCl₃.

Fig. S13 ¹³C-NMR of 4-acetylbiphenyl in CDCl₃.

Fig. S14 ¹H-NMR of 4-nitrobiphenyl in CDCl₃.

Fig. S18 ¹H-NMR of 2-phenylpyridine in CDCl₃.

Fig. S19 ¹³C-NMR of 2-phenylpyridine in CDCl₃.