Electronic Supplementary Information (ESI)

Phosphine-Free Synthesis of ZnSe:Mn²⁺ and ZnSe:Mn²⁺/ZnS Doped Quantum Dots Using New Se and S Precursors

Lai-Jun Zhang,*^{a,c} Xing-Can Shen,*^b Hong Liang,^{b,c} Fa-Yun Chen,^a and Hai-Jin Huang^a

^a School of Chemistry and Chemical Engineering, Shangrao Normal University, Shangrao 334001, China. Tel:

+86 793 8150637; E-mail: ljzhang@sru.jx.cn

^b Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education, School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China. Tel: +86 773 5846273; E-mail: xcshen@gxnu.edu.cn

^c School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China^c School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

1. Infrared (IR) spectroscopy of Mn precursor

Fig. S1 IR spectrum of Mn precursor

IR spectrum of the used Mn precursor has been acquired on a Nicolet 360E.FP Fourier transform infrared spectrophotometer and further shown in Fig. S1. There are three strong vibration peaks at 2959, 2924 and 2854 cm⁻¹, respectively, from the asymmetry and symmetrical C—H stretching vibration, indicating the presence of CH₃ and CH₂ group in the Mn precursor. Also the Mn precursor is a carboxylic acid salt, which is indicated by a strong carbonyl vibration absorption peak at the 1546 cm⁻¹. So, the above results illustrate the presence of the bonding between nonanoic

acid and Mn²⁺ according to the preparation conditions of Mn precursor.

2. Elemental analysis of Mn precursor

Found from Mn precursor: C, 58.34%; H, 9.39%.

Calculated from manganese nonanoate Mn(NA)2,: C, 58.52%; H, 9.28%.

The measured results from Mn precursor is very close to the calculated value from Mn(NA)₂.

3. Thermal gravimetric analysis of Mn precursor

Fig. S2 Thermal gravimetric curve of Mn precursor

Fig. S2 shows the thermal gravimetric curve of Mn precursor from 25 to 475 °C. There are two obvious weightlessness platform: one in the range of 80-101 °C due to the lost of adsorbed water and then continuous weightlessness from 245 °C to about 350 °C. The final residue was approximately 19%, in good agreement with the theortical Mn content (19.2 %) based on MnO as the residue of manganese nonanoate.

4. Conclusion

According to the above reuslts from infrared spectroscopy, elemental analysis and thermal gravimetric analysis, it is believed that the manganese precursor is manganese nonanoate [Mn(NA)₂]. In addition, the excess of nonanoic acid relative to Mn^{2+} used in the reaction (the ratio of nonanoic acid to Mn^{2+} is 3) favors the complete replacement of acetate with nonanoate to form Mn(NA)₂. The preparation reaction of Mn precursor can be represented by the following formula:

 $MnAc_2 + 2 CH_3(CH_2)_7COOH \rightarrow (CH_3(CH_2)_7COO)_2Mn.$