Protonation-controlled axial chirality in maleopimaric imides

Guiyang Yao,^{a, b†} Yajun Li,^{b†} Yongtao Zhu,^b Yingming Pan,^b Fuping Huang,^b Hengshan Wang*^b and Zhixin Liao*^a

^a Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast

University, Nanjing 211189, PR China

^b Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004, P. R. China.

Synthesis

Figure S1. ¹H NMR spectrum of 1 (initial state) (CDCl₃, 500 MHz).

Figure S2. ¹H NMR spectrum of **1** (equilibrium state) (CDCl₃, 500 MHz).

Figure S3. ¹³ C NMR spectrum of 1 (initial state) (CDCl₃, 125 MHz).

Figure S5. ¹H NMR spectrum of 2 (initial state) (CDCl₃, 500 MHz).

Figure S6. ¹³ C NMR spectrum of 2 (initial state) (CDCl₃, 125 MHz).

Figure S8. ¹H NMR spectrum of **3 (initial state)** (CDCl₃, 500 MHz).

ppm

Figure S9. ¹³ C NMR spectrum of 3 (initial state) (CDCl₃, 125 MHz).

Figure S10. MS spectrum of 3.

2D NMR

Figure S11¹H-¹H COSY spectrum of 1

Figure S15¹H-¹H HMBC spectrum of 2.

Figure S17¹H-¹H HSQC spectrum of 3.

Figure S18¹H-¹H HMBC spectrum of **3**.

Kinetic study

Figure S19. Rational barrier study overlay of 1 in CDCl₃ via NMR (293K)

Figure S20. Rational barrier study overlay of 1 in CDCl₃ via NMR (303K)

Figure S21. Rational barrier study overlay of 2 in CDCl₃ via NMR (293K)

Figure S22. Rational barrier study overlay of 2 in CDCl₃ via NMR (303K)

Figure S23. Full ¹H NMR (500 MHz) spectra of 2 when titrated with various equivalence of TFA in CDCl₃ at rt.

Figure S24. Full ¹H NMR (500 MHz) spectra of 2 when titrated with various equivalence of CH₃COOH in CDCl₃ at rt.

Figure S25. Full ¹H NMR (500 MHz) spectra of 2 when titrated with various equivalence of HCOOH in CDCl₃ at rt.

Figure S26. Full ¹H NMR (500 MHz) spectra of 2 when titrated with various equivalence of HCOOH in CDCl₃ at rt.