ELECTRONIC SUPPLEMENTARY INFORMATION

Zwitterionic Surfactant Assistant Fabrication of Mesoporous Silica Coated Carbon Nanotube for Organic Pollutants

Min Zhang^{*a*}, Jing Zheng^{*a*}, Peixiong Xia^{*a*}, Yue Zheng^{*a*}, Jingli Xu^{**a*}, Langxing Chen^{**b*}, Xiwen He^{*b*}, and Qunling Fang^{*c}

Figs. S1(a-e) SEM and TEM imagine of CNTs@SiO₂ using phospholipids(0.4 g), TEOS(500 uL) at different magnification

Figs. S2(a-b) TEM imagine of SiO₂ spheres without CNTs as template at different

Figs. S3(a-b) TEM imagine of CNTs@SiO₂ using CTAB(0.2 g) at different magnification

Fig. S4(a-b) TEM imagine of CNTs@SiO₂ using anionic surfactant(SDS) in the absence of APTES at different magnification

magnification

Fig. S5 TG/DSC data of the pristine CNTs (a) and CNTs@SDS@SiO₂ (b) respectively.

Fig. S6. FT-IR spectrum of as-prepared CNTs@SDS@SiO₂ composite using SDS surfactant

Fig. S7. The chemical structure of CTAB and Phosphatidylcholines

Table S1

BET specific surface values, BJH pore size and pore volume calculated from the N_2 adsorption/desorption isotherms for the materials used in this work.

Sample	BJH pore	BET Surface	Pore Volume/m ³
	size/nm	area/m ² g ⁻¹	g-1
CNTs@SiO ₂ (P)	14.27	187.31	0.67
CNTs@SiO ₂ (P/C 3:1)	3.95	413.24	0.41
CNTs@SiO ₂ (P/C 2:2)	2.92	644.85	0.47
CNTs@SiO ₂ ((P/C1:3)	2.51	784.55	0.49
CNTs@SiO ₂ (C-extraction)	2.72	831.00	0.56
CNTs@SDS@SiO2	4.71	207.04	0.24
(calcination)	4./1	207.84	0.24
CNTs@SDS@SiO2	2.10	(15.02	0.00
(extraction)	2.18	615.03	0.33
4	man	a b c-	

Fig. S8 Absorption spectra of a solution of Rhodamine B absorption of RB with the $CNTs@Phospholipids@SiO_2$ and the mesoporous $CNTs@SiO_2(P)$ respectively: (a) 0 minutes; (b) after mixing with $CNTs@Phospholipids@SiO_2$ for 60 minutes; (c) after mixing with the mesoporous $CNTs@SiO_2(P)$ for 60 minutes; (Inset imagine) Photos of absorption of RB with the $CNTs@Phospholipids@SiO_2$ and the mesoporous $CNTs@SiO_2(P)$ respectively: (a) 0 minutes; (b) after mixing with $CNTs@Phospholipids@SiO_2$ for 60 minutes; (c) after mixing with the mesoporous $CNTs@Phospholipids@SiO_2$ for 60 minutes; (c) after mixing with the mesoporous $CNTs@Phospholipids@SiO_2$ for 60 minutes; (c) after mixing with the mesoporous $CNTs@Phospholipids@SiO_2$ for 60 minutes; (c) after mixing with the mesoporous $CNTs@SiO_2(P)$ for 60 minutes; (b) after mixing with $CNTs@Phospholipids@SiO_2$ for 60 minutes; (c) after mixing with the mesoporous $CNTs@SiO_2(P)$ for 60 minutes; (b) after mixing with $CNTs@Phospholipids@SiO_2$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixing with the mesoporous CNTs $@SiO_2(P)$ for 60 minutes; (c) after mixi