Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014

Electronic Supplementary Information (ESI)

Hydrothermal synthesis of porous α-Fe₂O₃ nanostructures for highly efficient Cr(VI) removal

Er-tao Liu,^a Huiping Zhao,^a Hui Li,^a Guangfang Li,^a Yunling Liu^b and Rong Chen^{*a}

^a School of Chemistry and Environmental Engineering, Wuhan Institute of

Technology, Xiongchu Street, Wuhan, 430073, PR China

^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of

Chemistry, Jilin University, Changchun, 130012, PR China

* Corresponding author. Tel.: +86 13659815698; Fax: +86 2787194560.

E-mail: rchenhku@hotmail.com

Fig. S1 XRD patterns of α -Fe₂O₃: (a) S2; (b) S3.

Fig. S2 Nitrogen adsorption-desorption isotherms of α-Fe₂O₃ nanostructures: (a) S2;
(b) S3.

Fig. S3 (a) XRD pattern, (b) SEM image, (c) TEM image (d) HR-TEM image and (e) SAED pattern of α -FeOOH sample (S1 before calcinations).

Fig. S4 Nitrogen adsorption–desorption isotherm of α -FeOOH nanorods.

Fig. S5 XRD pattern (a) and SEM image (b) of porous $\alpha\text{-}Fe_2O_3$ nanorods after four

cycles.

Fig. S6 Time-dependent optical absorption spectra of Congo red solution with an initial concentration of 100 mg L⁻¹ in the presence of 30 mg of porous α -Fe₂O₃ nanorod (a), and commercial α -Fe₂O₃ (b), respectively.